登录社区云,与社区用户共同成长
邀请您加入社区
本文以 bevformer 精度评估为例,引到读者从评测环境构建到评测数据准备,最后到精度评测试试和最终结果计算的整个流程,以期给您一个进行板端精度评测的一个流程全貌。
此篇帖子将展示 征程 6 工具链 BEVPoolV2 单算子 QAT 链路的实现范例,以进一步增进用户对 BEVPoolV2 算子使用的认知。# 2.QAT 代码实现
当前,地平线 征程 6 工具链已经全面支持了 BEVPooling V2 算子,并与 mmdetection3d 的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。
DeepSeek 是一款基于人工智能的搜索引擎,旨在提升用户的搜索体验。它利用先进的自然语言处理技术,通过理解查询的上下文和意图,为用户提供更精确、相关的搜索结果。
为了实现整体效率 - 准确率驱动的模型设计,研究团队从效率、准确率两方面分别提出改进方法。为了提高效率,该研究提出了轻量级分类 head、空间通道(spatial-channel)解耦下采样和排序指导的块设计,以减少明显的计算冗余并实现更高效的架构。为了提高准确率,研究团队探索了大核卷积并提出了有效的部分自注意力(partial self-attention,PSA)模块来增强模型能力,在低成本下
本文以基于色选机数据集训练出的YOLOv5n模型为例,介绍如何使用PTQ进行量化编译并使用C++进行全流程的板端部署。介绍重点在于输入数据为RGB和NHWC时的处理方式。
在自动驾驶视觉感知系统中,为了获得环绕车辆范围的感知结果,通常需要融合多摄像头的感知结果。目前更加主流的感知架构则是选择在特征层面进行多摄像头融合。其中比较有代表性的路线就是这两年很火的 BEV 方法,继 Tesla Open AI Day 公布其 BEV 感知算法之后,相关研究层出不穷,感知效果取得了显著提升,BEV 也几乎成为了多传感器特征融合的代名词。
为了节省端侧计算资源以及简化部署工作,目前智驾方案中多采用动静态任务融合网络,地平线也释放了 Lidar-Camera 融合多任务 BEVFusion 参考算法。
相对于传统 CNN 模型来说,Transformer 模型的最大的一个特点就是灵活性。这个灵活性主要体现在模型中穿插大量的数据重排操作,即 Reshape 和 Transpose。
在自动驾驶系统中,感知技术是核心基础之一。感知技术为车辆提供环境信息,使其能够实现对周围环境的理解、分析与决策,从而保证安全性和高效性。通常大家对感知的介绍停留在“眼睛”的作用,但这样的解释太宽泛了例如感知到底是什么?由哪些模块组成?输入输出有什么含义?数据怎么流转的?会经历哪些硬件模块?下面来简单看一下。