目录

        1 点云建图的流程

        2 前端实现

        2.1 前端流程 

        2.2 前端结果 

         3 后端位姿图优化与异常值剔除

        3.1 两阶段优化流程

        3.2 优化结果       

        ① 第一阶段优化结果

         ② 第二阶段优化结果

        4 回环检测

        4.1 回环检测流程 

① 遍历第一阶段优化轨迹中的关键帧。

② 并发计算候选回环对是否成立

③ 记录所有成功经过筛选的回环候选对,并在第二阶段优化时读取回环检测的结果

        4.2 回环检测结果

        5 轨迹可视化

        6 地图导出

        7 地图分块

         8 本章小结


        完整的点云建图可以看成是一个 RTK、IMU、轮速计、激光的综合优化问题。大部分 L4 级别的自动驾驶任务都需要一张完整的、与 RTK 对准的点云地图来进行地图标注、高精定位等任务。

        1 点云建图的流程

        与在线 SLAM 系统不一样,地图构建系统完全可以工作在离线模式下。离线系统的一大好处是有很强的确定性。模块与模块之间也没有线程、资源上的调度问题,而在线系统往往要考虑线程间的等待关系。

  • 1. 首先,我们从给定的 ROS 包出解出 IMU、RTK 和激光数据。由于数据集的差异性,并非所有的数据集都含有轮速信息(而且往往轮速信息的格式与车相关,各有不同),因此我们主要使用 IMU 和激光数据来组成 LIO 系统。这部分内容会直接使用第8章的 IESKF LIO 代码。
  • 2. 大部分自动驾驶车辆还会携带 RTK 设备或者组合导航设备。这些设备能给出车辆在物理世界中的位置,但可能受到信号影响。我们在 LIO 系统中按照一定距离来收集点云关键帧,然后按照 RTK 或组合导航的位姿给每个关键帧赋一个 RTK 位姿,作为观测。本书主要以NCLT 数据集为例,而 NCLT 数据集的 RTK 信号属于单天线方案,仅有平移信息而不含位姿信息。
  • 3. 接下来,我们使用 LIO 作为相邻帧运动观测,使用 RTK 位姿作为绝对坐标观测,优化整条轨迹并判定各关键帧的 RTK 有效性。这称为第一阶段优化。如果 RTK 正常,此时我们会得到一条和 RTK 大致符合的轨迹。然而在实际环境中,RTK 会存在许多无效观测,我们也需要在算法中加以判定。
  • 4. 我们在上一步的基础上对地图进行回环检测。检测算法可以简单地使用基于位置(欧氏距离)的回环检测,并使用 NDT 或常见的配准算法计算它们的相对位姿。本例使用多分辨率的 NDT 匹配作为回环检测方法
  • 5. 最后,我们再把这些信息放到统一的位姿图中进行优化,消除累计误差带来的重影,同时也移除 RTK 失效区域。这称为第二阶段优化。在确定了位姿以后,我们就按照这些位姿来导出点云地图。为了方便地图加载与查看,我们还会对点云地图进行切片处理。处理完之后的点云就可以用来进行高精定位或者地图标注了。
int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);
    FLAGS_stderrthreshold = google::INFO;
    FLAGS_colorlogtostderr = true;
    google::ParseCommandLineFlags(&argc, &argv, true);

    LOG(INFO) << "testing frontend";
    sad::Frontend frontend(FLAGS_config_yaml);
    if (!frontend.Init()) {
        LOG(ERROR) << "failed to init frontend.";
        return -1;
    }

    frontend.Run();

    sad::Optimization opti(FLAGS_config_yaml);
    if (!opti.Init(1)) {
        LOG(ERROR) << "failed to init opti1.";
        return -1;
    }
    opti.Run();

    sad::LoopClosure lc(FLAGS_config_yaml);
    if (!lc.Init()) {
        LOG(ERROR) << "failed to init loop closure.";
        return -1;
    }
    lc.Run();

    sad::Optimization opti2(FLAGS_config_yaml);
    if (!opti2.Init(2)) {
        LOG(ERROR) << "failed to init opti2.";
        return -1;
    }
    opti2.Run();

    LOG(INFO) << "done.";
    return 0;
}

        2 前端实现

        前端代码运行后会得到 每个关键帧对应的 LIO 位姿、RTK 位姿以及扫描到的点云 scan。数据都会被存储在 data/ch9/keyframes.txt 

        存储顺序为:id_、timestamp_、rtk_heading_valid_、rtk_valid_、rtk_inlier_、lidar_pose_、rtk_pose_、opti_pose_1_、opti_pose_2_

0 1357847247.39686394 0 1 1 -1.46139387880958999e-06 -4.83414494836381997e-05 -5.27170121118259501e-06 -0.00234364570459886113 -7.70544167884409974e-05 4.34271791134374974e-05 0.999997249746972239 0.00277232000311427923 0.00764066664148633015 -0.00289528565243002802 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
1 1357847253.14514446 0 1 1 -0.0670883829896546102 0.126191846878685315 0.00866291020077865175 0.0426005749366538539 0.000238472378827936458 0.084511669858249247 0.995511382056358696 -0.000874104033612869979 0.102182349318781368 0.00650536902844988177 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
2 1357847253.64538193 0 1 1 -0.00427907445498453259 0.0132525322323276649 0.000541220831102592155 0.0943471987625134206 0.0112016335156973779 0.157637486857287762 0.982915841885542818 -0.0758422918343611557 0.333011746302124156 0.0181280469104047465 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

        2.1 前端流程 

  • 1. 将 ROS 包中的 RTK 数据提取出来,放在 RTK 消息队列中,按采集时间排序
  • 2. 用第一个有效的 RTK 数据作为地图原点,将其他 RTK 读数减去地图原点后,作为 RTK 的位置观测。
  • 3. 用 IMU 和激光数据运行 IESKF LIO,得到当前 State (current_time_, R_, p_, v_, bg_, ba_)。然后根据当前 State 通过 Frontend::ExtractKeyFrame() 函数按照距离和角度阈值判断当前雷达 scan 是否为关键帧。如果是关键帧的话,通过插值获取当前 State 的 RTK 位姿。

         时间同步部分:

        2.2 前端结果 

        IMU 静止初始化结果:

I0113 22:19:50.345458 409430 static_imu_init.cc:86] mean acce: -0.133286 0.0166332 009.80364
I0113 22:19:50.345479 409430 static_imu_init.cc:109] IMU 初始化成功,初始化时间= 9.9985, bg = 00.00159973 0000.003007 -0.00239681, ba = 07.40016e-05 -9.23492e-06 0-0.00544309, gyro sq = 00.00067222 3.29092e-06 3.63085e-05, acce sq = 7.68385e-06 00.00197847 1.57072e-06, grav = 0000.13336 -0.0166424 00-9.80908, norm: 9.81
I0113 22:19:50.345501 409430 static_imu_init.cc:113] mean gyro: 00.00159973 0000.003007 -0.00239681 acce: 07.40016e-05 -9.23492e-06 0-0.00544309
imu try init true time:1357847247.28515291
I0113 22:19:50.345526 409430 lio_iekf.cc:149] IMU初始化成功

        前端实现全流程代码:

void Frontend::Run() {
    sad::RosbagIO rosbag_io(bag_path_, DatasetType::NCLT);

    // 先提取RTK pose,注意NCLT只有平移部分
    rosbag_io
        .AddAutoRTKHandle([this](GNSSPtr gnss) {
            gnss_.emplace(gnss->unix_time_, gnss);
            return true;
        })
        .Go();
    rosbag_io.CleanProcessFunc();  // 不再需要处理RTK

    RemoveMapOrigin();

    // 再运行LIO
    rosbag_io
        .AddAutoPointCloudHandle([&](sensor_msgs::PointCloud2::Ptr cloud) -> bool {
            lio_->PCLCallBack(cloud);
            ExtractKeyFrame(lio_->GetCurrentState());
            return true;
        })
        .AddImuHandle([&](IMUPtr imu) {
            lio_->IMUCallBack(imu);
            return true;
        })
        .Go();
    lio_->Finish();

    // 保存运行结果
    SaveKeyframes();

    LOG(INFO) << "done.";
}

        判断当前雷达 scan 是否为关键帧代码:

// 主代码
lio_->PCLCallBack(cloud);
ExtractKeyFrame(lio_->GetCurrentState());

// 当前 state 是否能提取到关键帧。如果提取到关键帧,插值获取当前 state 的 RTK 位姿
void Frontend::ExtractKeyFrame(const sad::NavStated& state) {
    if (last_kf_ == nullptr) {
        if (!lio_->GetCurrentScan()) {
            // LIO没完成初始化
            return;
        }
        // 第一个帧
        auto kf = std::make_shared<Keyframe>(state.timestamp_, kf_id_++, state.GetSE3(), lio_->GetCurrentScan());
        FindGPSPose(kf);
        kf->SaveAndUnloadScan("/home/wu/slam_in_autonomous_driving/data/ch9/");
        keyframes_.emplace(kf->id_, kf);
        last_kf_ = kf;
    } else {
        // 计算当前state与kf之间的相对运动阈值
        SE3 delta = last_kf_->lidar_pose_.inverse() * state.GetSE3();
        if (delta.translation().norm() > kf_dis_th_ || delta.so3().log().norm() > kf_ang_th_deg_ * math::kDEG2RAD) {
            auto kf = std::make_shared<Keyframe>(state.timestamp_, kf_id_++, state.GetSE3(), lio_->GetCurrentScan());
            FindGPSPose(kf);
            keyframes_.emplace(kf->id_, kf);
            kf->SaveAndUnloadScan("/home/wu/slam_in_autonomous_driving/data/ch9/");
            LOG(INFO) << "生成关键帧" << kf->id_;
            last_kf_ = kf;
        }
    }
}

        RTK 位姿插值代码:

        插值详见 《自动驾驶与机器人中的SLAM技术》ch7:基于 ESKF 的松耦合 LIO 系统 插值部分。

假设比例 s 计算公式如下,其中 t 为待插值的时刻, t_0 为起始时刻, t_s 为结束时刻:

s_t=\frac{t - t_0}{t_s-t_0}

  • 旋转部分插值:四元数球面线性插值 (SLERP),确保旋转路径在旋转空间中的弧长最短。

q_t = q_{t_0}(q_{t_0}^{-1}q_{t_s})^{s_t}

  • 平移部分插值:平移向量线性插值 (LERP)

p_t=(1-s_t)p_{t_0} + s_tp_{t_s}

        注意:这种去畸变的方法前提是滤波器本身有效。如果滤波器失效或位姿发散,去畸变算法也就随之发散了。

void Frontend::FindGPSPose(std::shared_ptr<Keyframe> kf) {
    SE3 pose;
    GNSSPtr match;
    // pose 为插值结果
    if (math::PoseInterp<GNSSPtr>(
            kf->timestamp_, gnss_, [](const GNSSPtr& gnss) -> SE3 { return gnss->utm_pose_; }, pose, match)) {
        kf->rtk_pose_ = pose;
        kf->rtk_valid_ = true;
    } else {
        kf->rtk_valid_ = false;
    }
}


/**
 * pose 插值算法
 * @tparam T    数据类型
 * @param query_time 查找时间
 * @param data  数据
 * @param take_pose_func 从数据中取pose的谓词
 * @param result 查询结果
 * @param best_match_iter 查找到的最近匹配
 *
 * NOTE 要求query_time必须在data最大时间和最小时间之间,不会外推
 * data的map按时间排序
 * @return 插值是否成功
 */
template <typename T>
bool PoseInterp(double query_time, const std::map<double, T>& data, const std::function<SE3(const T&)>& take_pose_func,
                SE3& result, T& best_match) {
    if (data.empty()) {
        LOG(INFO) << "data is empty";
        return false;
    }

    if (query_time > data.rbegin()->first) {
        LOG(INFO) << "query time is later than last, " << std::setprecision(18) << ", query: " << query_time
                  << ", end time: " << data.rbegin()->first;

        return false;
    }

    auto match_iter = data.begin();
    for (auto iter = data.begin(); iter != data.end(); ++iter) {
        auto next_iter = iter;
        next_iter++;

        if (iter->first < query_time && next_iter->first >= query_time) {
            match_iter = iter;
            break;
        }
    }

    auto match_iter_n = match_iter;
    match_iter_n++;
    assert(match_iter_n != data.end());

    double dt = match_iter_n->first - match_iter->first;
    double s = (query_time - match_iter->first) / dt;  // s=0 时为第一帧,s=1时为next

    SE3 pose_first = take_pose_func(match_iter->second);
    SE3 pose_next = take_pose_func(match_iter_n->second);
    result = {pose_first.unit_quaternion().slerp(s, pose_next.unit_quaternion()),
              pose_first.translation() * (1 - s) + pose_next.translation() * s};
    best_match = s < 0.5 ? match_iter->second : match_iter_n->second;
    return true;
}

         3 后端位姿图优化与异常值剔除

        后端图优化需要包含以下因子:

  • RTK 因子:3 维的单元边(称为绝对位姿约束边),连接到每个关键帧,即顶点。误差为GNSS 估计位姿(由雷达位姿转换而来)与 RTK 位姿的平移差。当 RTK 存在外参(RTK 不在车辆中心)时,它的平移观测需要经过转换之后才能正确作用于车体的位移。
  • 雷达里程计因子:6 维的二元边(称为相对运动约束边),对每个关键帧,连接当前关键帧和后续 5 个关键帧。误差为两帧之间的相对运动差,即 T_{w1}^{-1}T_{w2}
  • 回环因子:和雷达里程计因子是同一种边,对所有的回环候选关键帧对添加相对运动约束边。 
/**
 * 只有平移的GNSS
 * 此时需要提供RTK外参 TBG,才能正确施加约束
 */
class EdgeGNSSTransOnly : public g2o::BaseUnaryEdge<3, Vec3d, VertexPose> {
   public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    /**
     * 指定位姿顶点、RTK观测 t_WG、外参TGB
     * @param v
     * @param obs
     */
    EdgeGNSSTransOnly(VertexPose* v, const Vec3d& obs, const SE3& TBG) : TBG_(TBG) {
        setVertex(0, v);
        setMeasurement(obs);
    }

    void computeError() override {
        VertexPose* v = (VertexPose*)_vertices[0];
        // RTK 读数为 T_WG
        _error = (v->estimate() * TBG_).translation() - _measurement;
    };

    // void linearizeOplus() override {
    //     VertexPose* v = (VertexPose*)_vertices[0];
    //     // jacobian 6x6
    //     _jacobianOplusXi.setZero();
    //     _jacobianOplusXi.block<3, 3>(0, 0) = (_measurement.so3().inverse() * v->estimate().so3()).jr_inv();  // dR/dR
    //     _jacobianOplusXi.block<3, 3>(3, 3) = Mat3d::Identity();                                              // dp/dp
    // }

    virtual bool read(std::istream& in) { return true; }
    virtual bool write(std::ostream& out) const { return true; }

   private:
    SE3 TBG_;
};


/**
 * 6 自由度相对运动
 * 误差的平移在前,角度在后
 * 观测:T12
 */
class EdgeRelativeMotion : public g2o::BaseBinaryEdge<6, SE3, VertexPose, VertexPose> {
   public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    EdgeRelativeMotion() = default;
    EdgeRelativeMotion(VertexPose* v1, VertexPose* v2, const SE3& obs) {
        setVertex(0, v1);
        setVertex(1, v2);
        setMeasurement(obs);
    }

    void computeError() override {
        VertexPose* v1 = (VertexPose*)_vertices[0];
        VertexPose* v2 = (VertexPose*)_vertices[1];
        SE3 T12 = v1->estimate().inverse() * v2->estimate();
        _error = (_measurement.inverse() * v1->estimate().inverse() * v2->estimate()).log();
    };

    virtual bool read(std::istream& is) override {
        double data[7];
        for (int i = 0; i < 7; i++) {
            is >> data[i];
        }
        Quatd q(data[6], data[3], data[4], data[5]);
        q.normalize();
        setMeasurement(SE3(q, Vec3d(data[0], data[1], data[2])));
        for (int i = 0; i < information().rows() && is.good(); i++) {
            for (int j = i; j < information().cols() && is.good(); j++) {
                is >> information()(i, j);
                if (i != j) information()(j, i) = information()(i, j);
            }
        }
        return true;
    }

    virtual bool write(std::ostream& os) const override {
        os << "EDGE_SE3:QUAT ";
        auto* v1 = static_cast<VertexPose*>(_vertices[0]);
        auto* v2 = static_cast<VertexPose*>(_vertices[1]);
        os << v1->id() << " " << v2->id() << " ";
        SE3 m = _measurement;
        Eigen::Quaterniond q = m.unit_quaternion();
        os << m.translation().transpose() << " ";
        os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";

        // information matrix
        for (int i = 0; i < information().rows(); i++) {
            for (int j = i; j < information().cols(); j++) {
                os << information()(i, j) << " ";
            }
        }
        os << std::endl;
        return true;
    }

   private:
};

        3.1 两阶段优化流程

        优化分为两阶段,顺序为 第一阶段优化\rightarrow回环检测\rightarrow第二阶段优化。在每阶段的优化中,又分别进行了两次优化。

  • 1. 首先使用 Optimization::Init() 函数初始化优化问题,加载关键帧参数及配置参数。若为第二阶段,则加载筛选后的回环检测。随后进入 Optimization::Run() 函数进行优化处理。
  • 2. 如果是单天线 RTK 方案(没有姿态信息),且处于第一阶段,就调用一次 ICP 将雷达位姿和 RTK 位姿对齐。
  • 3. 建立优化问题,包括优化器的创建、顶点(第一阶段使用 LIO 位姿作为顶点位姿估计值,这也是第一阶段第一次优化前 lidar 误差为 0 的原因;第二阶段使用第一阶段优化后的位姿作为估计值)创建RTK 边创建(①带有鲁棒核函数②第二阶段的信息矩阵添加了0.01的乘积因子,降低了权重)、LIO 边的创建(没有鲁棒核函数)。若为第二阶段,则进行回环检测边的创建(带有鲁棒核函数)。
  • 4. 进行第一次优化,此时 RTK 边和 回环检测边 带有鲁棒核函数。
  • 5. 遍历回环检测边和 RTK 边,通过阈值筛选异常边,将异常边的等级设置为 1(表示不优化);对于非异常边,去掉其鲁棒核函数。
  • 6. 进行第二次优化,得到某一阶段的最终优化结果。
  • 7. 保存结果。第一阶段优化结果保存到 opti_pose_1_,第二阶段优化结果保存到 opti_pose_2_。

        总体来说就是。使用

        接下来是代码部分:

1. 首先使用 Optimization::Init() 函数初始化优化问题,加载关键帧参数及配置参数。若为第二阶段,则加载筛选后的回环检测。随后进入 Optimization::Run() 函数进行优化处理。

bool Optimization::Init(int stage) {
    stage_ = stage;

    if (!LoadKeyFrames("/home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt", keyframes_)) {
        LOG(ERROR) << "cannot load keyframes.txt";
        return false;
    }

    LOG(INFO) << "keyframes: " << keyframes_.size();

    // 读参数
    auto yaml = YAML::LoadFile(yaml_);
    rtk_outlier_th_ = yaml["rtk_outlier_th"].as<double>();
    lidar_continuous_num_ = yaml["lidar_continuous_num"].as<int>();
    rtk_has_rot_ = yaml["rtk_has_rot"].as<bool>();

    rtk_pos_noise_ = yaml["rtk_pos_noise"].as<double>();
    rtk_ang_noise_ = yaml["rtk_ang_noise"].as<double>() * math::kDEG2RAD;
    rtk_height_noise_ratio_ = yaml["rtk_height_noise_ratio"].as<double>();

    std::vector<double> rtk_ext_t = yaml["rtk_ext"]["t"].as<std::vector<double>>();
    TBG_ = SE3(SO3(), Vec3d(rtk_ext_t[0], rtk_ext_t[1], rtk_ext_t[2]));
    LOG(INFO) << "TBG = \n" << TBG_.matrix();

    // my 两阶段不同之处
    if (stage_ == 2) {
        LoadLoopCandidates();
    }
    return true;
}

2. 如果是单天线 RTK 方案(没有姿态信息),且处于第一阶段,就调用一次 ICP 将雷达位姿和 RTK 位姿对齐。

void Optimization::Run() {
    LOG(INFO) << "running optimization on stage " << stage_;
    // my 两阶段不同之处
    if (!rtk_has_rot_ && stage_ == 1) {
        InitialAlign();
    }

    BuildProblem();  // 建立问题

    SaveG2O("/home/wu/slam_in_autonomous_driving/data/ch9/before.g2o");
    LOG(INFO) << "RTK 误差:" << print_info(gnss_edge_, rtk_outlier_th_);
    LOG(INFO) << "RTK 平移误差:" << print_info(gnss_trans_edge_, rtk_outlier_th_);
    LOG(INFO) << "lidar 误差:" << print_info(lidar_edge_, 0);

    Solve();           // 带着RK求解一遍
    RemoveOutliers();  // 移除异常值
    Solve();           // 再求解一遍

    SaveG2O("/home/wu/slam_in_autonomous_driving/data/ch9/after.g2o");

    SaveResults();  // 保存结果
    LOG(INFO) << "done";
}

3. 建立优化问题,包括优化器的创建、顶点(第一阶段使用 LIO 位姿作为顶点位姿估计值,第二阶段使用第一阶段优化后的位姿作为估计值)创建、RTK 边创建(①带有鲁棒核函数②第二阶段的信息矩阵添加了0.01的乘积因子,降低了权重)、LIO 边的创建(没有鲁棒核函数)。若为第二阶段,则进行回环检测边的创建(带有鲁棒核函数)。

void Optimization::BuildProblem() {
    using BlockSolverType = g2o::BlockSolverX;
    using LinearSolverType = g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType>;
    auto* solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));

    optimizer_.setAlgorithm(solver);

    AddVertices();
    AddRTKEdges();
    AddLidarEdges();
    AddLoopEdges();
}

void Optimization::AddVertices() {
    for (auto& kfp : keyframes_) {
        auto kf = kfp.second;

        // make g2o vertex for this kf
        auto v = new VertexPose();
        v->setId(kf->id_);

        // my 两阶段不同之处
        if (stage_ == 1) {
            v->setEstimate(kf->lidar_pose_);
        } else {
            v->setEstimate(kf->opti_pose_1_);
        }

        optimizer_.addVertex(v);
        vertices_.emplace(kf->id_, v);
    }
    LOG(INFO) << "vertex: " << vertices_.size();
}

void Optimization::AddRTKEdges() {
    /// RTK 噪声设置
    Mat3d info_pos = Mat3d::Identity() * 1.0 / (rtk_pos_noise_ * rtk_pos_noise_);
    info_pos(2, 2) = 1.0 / (rtk_height_noise_ratio_ * rtk_pos_noise_ * rtk_height_noise_ratio_ * rtk_pos_noise_);
    Mat3d info_ang = Mat3d::Identity() * 1.0 / (rtk_ang_noise_ * rtk_ang_noise_);
    Mat6d info_all = Mat6d::Identity();
    info_all.block<3, 3>(0, 0) = info_ang;
    info_all.block<3, 3>(3, 3) = info_pos;
    // 信息矩阵:分配观测值权重
    LOG(INFO) << "Info of rtk trans: " << info_pos.diagonal().transpose();

    // my 两阶段不同之处
    if (stage_ == 2) {
        info_pos *= 0.01;
        info_all *= 0.01;
    }

    for (auto& kfp : keyframes_) {
        auto kf = kfp.second;
        if (!kf->rtk_valid_) {
            continue;
        }

        if (kf->rtk_heading_valid_) {
            auto edge = new EdgeGNSS(vertices_.at(kf->id_), kf->rtk_pose_);
            edge->setInformation(info_all);
            auto rk = new g2o::RobustKernelHuber();
            rk->setDelta(rtk_outlier_th_);
            edge->setRobustKernel(rk);
            optimizer_.addEdge(edge);
            gnss_edge_.emplace_back(edge);
        } else {
            auto edge = new EdgeGNSSTransOnly(vertices_.at(kf->id_), kf->rtk_pose_.translation(), TBG_);
            edge->setInformation(info_pos);
            auto rk = new g2o::RobustKernelCauchy();
            rk->setDelta(rtk_outlier_th_);
            edge->setRobustKernel(rk);
            optimizer_.addEdge(edge);
            gnss_trans_edge_.emplace_back(edge);
        }
    }

    LOG(INFO) << "gnss edges: " << gnss_edge_.size() << ", " << gnss_trans_edge_.size();
}

void Optimization::AddLidarEdges() {
    const double lidar_pos_noise = 0.01, lidar_ang_noise = 0.1 * math::kDEG2RAD;  // RTK 观测的噪声
    Mat3d info_pos = Mat3d::Identity() * 1.0 / (lidar_pos_noise * lidar_pos_noise);
    Mat3d info_ang = Mat3d::Identity() * 1.0 / (lidar_ang_noise * lidar_ang_noise);
    Mat6d info_all = Mat6d::Identity();
    info_all.block<3, 3>(0, 0) = info_pos;
    info_all.block<3, 3>(3, 3) = info_ang;

    for (auto iter = keyframes_.begin(); iter != keyframes_.end(); ++iter) {
        auto iter_next = iter;
        for (int i = 0; i < lidar_continuous_num_; ++i) {
            iter_next++;

            if (iter_next == keyframes_.end()) {
                break;
            }

            // 添加iter和iter_next之间的相邻运动
            // 注意:这里观测用的是 lidar_pose_,而在第二阶段时 v->setEstimate(kf->opti_pose_1_) 添加的是 opti_pose_1_,所以 LIDAR 误差不为 0。
            auto edge = new EdgeRelativeMotion(vertices_.at(iter->second->id_), vertices_.at(iter_next->second->id_),
                                               iter->second->lidar_pose_.inverse() * iter_next->second->lidar_pose_);
            edge->setInformation(info_all);
            optimizer_.addEdge(edge);
            lidar_edge_.emplace_back(edge);
        }
    }

    LOG(INFO) << "lidar edges: " << lidar_edge_.size();
}

void Optimization::AddLoopEdges() {
    // my 两阶段不同之处
    if (stage_ == 1) {
        return;
    }

    const double loop_pos_noise = 0.1, loop_ang_noise = 0.5 * math::kDEG2RAD;  // RTK 观测的噪声
    Mat3d info_pos = Mat3d::Identity() * 1.0 / (loop_pos_noise * loop_pos_noise);
    Mat3d info_ang = Mat3d::Identity() * 1.0 / (loop_ang_noise * loop_ang_noise);
    Mat6d info_all = Mat6d::Identity();
    info_all.block<3, 3>(0, 0) = info_pos;
    info_all.block<3, 3>(3, 3) = info_ang;

    const double loop_rk_th = 5.2;

    for (const auto& lc : loop_candidates_) {
        auto edge = new EdgeRelativeMotion(vertices_.at(lc.idx1_), vertices_.at(lc.idx2_), lc.Tij_);
        edge->setInformation(info_all);
        auto rk = new g2o::RobustKernelCauchy();
        rk->setDelta(loop_rk_th);
        edge->setRobustKernel(rk);
        optimizer_.addEdge(edge);
        loop_edge_.emplace_back(edge);
    }
}

void Optimization::Solve() {
    optimizer_.setVerbose(true);
    optimizer_.initializeOptimization(0);
    optimizer_.optimize(100);

    LOG(INFO) << "RTK 误差:" << print_info(gnss_edge_, rtk_outlier_th_);
    LOG(INFO) << "RTK 平移误差:" << print_info(gnss_trans_edge_, rtk_outlier_th_);
    LOG(INFO) << "lidar 误差:" << print_info(lidar_edge_, 0);
    LOG(INFO) << "loop 误差:" << print_info(loop_edge_, 0);
}

4. 进行第一次优化,此时 RTK 边和 回环检测边 带有鲁棒核函数。

Solve();           // 带着RK求解一遍

5. 遍历回环检测边和 RTK 边,通过阈值筛选异常边,将异常边的等级设置为 1(表示不优化);对于非异常边,去掉其鲁棒核函数。

void Optimization::RemoveOutliers() {
    // 主要用于移除GNSS的异常值
    int cnt_outlier_removed = 0; // :统计当前移除的异常值数量。
    auto remove_outlier = [&cnt_outlier_removed](g2o::OptimizableGraph::Edge* e) {
        if (e->chi2() > e->robustKernel()->delta()) {
            // level 等级设置成 1,表示不优化(默认情况下,g2o 只处理 level=0 的边)
            e->setLevel(1);
            cnt_outlier_removed++;
        } else {
            // 剩下的边的误差均小于鲁棒核函数的默认值,也就不需要该函数了,所以设置鲁棒核函数为空(nullptr),这样优化过程中直接按照原二次误差处理。
            e->setRobustKernel(nullptr);
        }
    };

    // 移除GNSS的异常值
    std::for_each(gnss_edge_.begin(), gnss_edge_.end(), remove_outlier);
    std::for_each(gnss_trans_edge_.begin(), gnss_trans_edge_.end(), remove_outlier);
    LOG(INFO) << "gnss outlier: " << cnt_outlier_removed << "/" << gnss_edge_.size() + gnss_trans_edge_.size();

    // 移除回环检测的异常值
    cnt_outlier_removed = 0;
    std::for_each(loop_edge_.begin(), loop_edge_.end(), remove_outlier);
    LOG(INFO) << "loop outlier: " << cnt_outlier_removed << "/" << loop_edge_.size();
}

6. 进行第二次优化,得到某一阶段的最终优化结果。

Solve();           // 再求解一遍

7. 保存结果。第一阶段优化结果保存到 opti_pose_1_,第二阶段优化结果保存到 opti_pose_2_。

void Optimization::SaveResults() {
    for (auto& v : vertices_) {
        if (stage_ == 1) {
            keyframes_.at(v.first)->opti_pose_1_ = v.second->estimate();
        } else {
            keyframes_.at(v.first)->opti_pose_2_ = v.second->estimate();
        }
    }

    // 比较优化pose和rtk pose
    std::vector<double> rtk_trans_error;
    for (auto& kfp : keyframes_) {
        auto kf = kfp.second;
        Vec3d tWG = kf->rtk_pose_.translation();
        Vec3d t_opti = (kf->opti_pose_1_ * TBG_).translation();
        double n = (tWG - t_opti).head<2>().norm();
        rtk_trans_error.emplace_back(n);
    }

    std::sort(rtk_trans_error.begin(), rtk_trans_error.end());
    LOG(INFO) << "med error: " << rtk_trans_error[rtk_trans_error.size() / 2];

    // 写入文件
    system("rm /home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt");
    std::ofstream fout("/home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt");
    for (auto& kfp : keyframes_) {
        kfp.second->Save(fout);
    }
    fout.close();
}

        3.2 优化结果       

        ① 第一阶段优化结果
wu@WP:~/slam_in_autonomous_driving/bin$ ./run_optimization --stage=1

I0114 13:20:35.330343 421782 run_optimization.cc:23] testing optimization
I0114 13:20:35.335601 421782 keyframe.cc:78] Loaded kfs: 1143
I0114 13:20:35.335613 421782 optimization.cc:52] keyframes: 1143
I0114 13:20:35.346560 421782 optimization.cc:66] TBG = 
000001 000000 000000 000000
000000 000001 000000 000.24
000000 000000 000001 -0.283
000000 000000 000000 000001
I0114 13:20:35.346596 421782 optimization.cc:76] running optimization on stage 1
I0114 13:20:35.346643 421782 optimization.cc:335] p1: -215.594 -47.5573 -5.71106, p2: 218.772 17.5467 1.19319
I0114 13:20:35.346962 421782 optimization.cc:364] initial trans: 
0-0.989348 000.141275 0-0.035093 00-1.58926
0-0.141523 0-0.989924 0.00467225 000.768323
-0.0340794 0.00958895 000.999373 000.383868
0000000000 0000000000 0000000000 0000000001
I0114 13:20:35.347182 421782 optimization.cc:146] vertex: 1143
I0114 13:20:35.347186 421782 optimization.cc:158] Info of rtk trans: 000.25 000.25 0.0025
I0114 13:20:35.347465 421782 optimization.cc:191] gnss edges: 0, 1143
I0114 13:20:35.349598 421782 optimization.cc:221] lidar edges: 5700
I0114 13:20:35.402307 421782 optimization.cc:85] RTK 误差:
I0114 13:20:35.402323 421782 optimization.cc:86] RTK 平移误差:数量: 1143, 均值: 5.418336, 中位数: 0.338018, 0.1分位: 0.099467, 0.9分位: 1.155777, 0.95分位:29.841078, 最大值: 166.835762, 阈值: 1.000000
I0114 13:20:35.402400 421782 optimization.cc:87] lidar 误差:数量: 5700, 均值: 0.000000, 中位数: 0.000000, 0.1分位: 0.000000, 0.9分位: 0.000000, 0.95分位:0.000000, 最大值: 0.000000, 阈值: 0.000000
iteration= 0	 chi2= 645.444572	 time= 0.045737	 cumTime= 0.045737	 edges= 6843	 schur= 0	 lambda= 13.285494	 levenbergIter= 1
iteration= 1	 chi2= 640.432056	 time= 0.035216	 cumTime= 0.080953	 edges= 6843	 schur= 0	 lambda= 4.428498	 levenbergIter= 1
iteration= 2	 chi2= 627.241357	 time= 0.0353586	 cumTime= 0.116312	 edges= 6843	 schur= 0	 lambda= 1.476166	 levenbergIter= 1
iteration= 3	 chi2= 596.229379	 time= 0.0352488	 cumTime= 0.15156	 edges= 6843	 schur= 0	 lambda= 0.492055	 levenbergIter= 1
iteration= 4	 chi2= 541.185154	 time= 0.0350486	 cumTime= 0.186609	 edges= 6843	 schur= 0	 lambda= 0.164018	 levenbergIter= 1
iteration= 5	 chi2= 490.442325	 time= 0.0349324	 cumTime= 0.221541	 edges= 6843	 schur= 0	 lambda= 0.054673	 levenbergIter= 1
iteration= 6	 chi2= 475.227538	 time= 0.0350432	 cumTime= 0.256585	 edges= 6843	 schur= 0	 lambda= 0.018224	 levenbergIter= 1
iteration= 7	 chi2= 472.835370	 time= 0.0350574	 cumTime= 0.291642	 edges= 6843	 schur= 0	 lambda= 0.006075	 levenbergIter= 1
iteration= 8	 chi2= 470.709964	 time= 0.0349512	 cumTime= 0.326593	 edges= 6843	 schur= 0	 lambda= 0.002025	 levenbergIter= 1
iteration= 9	 chi2= 468.734946	 time= 0.0353598	 cumTime= 0.361953	 edges= 6843	 schur= 0	 lambda= 0.000675	 levenbergIter= 1
iteration= 10	 chi2= 468.114726	 time= 0.0350006	 cumTime= 0.396954	 edges= 6843	 schur= 0	 lambda= 0.000225	 levenbergIter= 1
iteration= 11	 chi2= 468.066097	 time= 0.0350694	 cumTime= 0.432023	 edges= 6843	 schur= 0	 lambda= 0.000075	 levenbergIter= 1
iteration= 12	 chi2= 468.065040	 time= 0.0349778	 cumTime= 0.467001	 edges= 6843	 schur= 0	 lambda= 0.000050	 levenbergIter= 1
iteration= 13	 chi2= 468.065030	 time= 0.0349623	 cumTime= 0.501963	 edges= 6843	 schur= 0	 lambda= 0.000033	 levenbergIter= 1
iteration= 14	 chi2= 468.065030	 time= 0.0553328	 cumTime= 0.557296	 edges= 6843	 schur= 0	 lambda= 0.728149	 levenbergIter= 6
iteration= 15	 chi2= 468.065030	 time= 0.0351333	 cumTime= 0.592429	 edges= 6843	 schur= 0	 lambda= 0.485432	 levenbergIter= 1
iteration= 16	 chi2= 468.065030	 time= 0.0351449	 cumTime= 0.627574	 edges= 6843	 schur= 0	 lambda= 0.323622	 levenbergIter= 1
iteration= 17	 chi2= 468.065029	 time= 0.0471594	 cumTime= 0.674733	 edges= 6843	 schur= 0	 lambda= 13.807856	 levenbergIter= 4
iteration= 18	 chi2= 468.065029	 time= 0.035124	 cumTime= 0.709857	 edges= 6843	 schur= 0	 lambda= 9.205237	 levenbergIter= 1
iteration= 19	 chi2= 468.065029	 time= 0.0351963	 cumTime= 0.745054	 edges= 6843	 schur= 0	 lambda= 6.136825	 levenbergIter= 1
iteration= 20	 chi2= 468.065029	 time= 0.0350088	 cumTime= 0.780063	 edges= 6843	 schur= 0	 lambda= 4.091217	 levenbergIter= 1
iteration= 21	 chi2= 468.065029	 time= 0.0350847	 cumTime= 0.815147	 edges= 6843	 schur= 0	 lambda= 2.727478	 levenbergIter= 1
iteration= 22	 chi2= 468.065029	 time= 0.0352051	 cumTime= 0.850352	 edges= 6843	 schur= 0	 lambda= 1.818318	 levenbergIter= 1
iteration= 23	 chi2= 468.065029	 time= 0.0349688	 cumTime= 0.885321	 edges= 6843	 schur= 0	 lambda= 1.212212	 levenbergIter= 1
iteration= 24	 chi2= 468.065029	 time= 0.035229	 cumTime= 0.92055	 edges= 6843	 schur= 0	 lambda= 0.808142	 levenbergIter= 1
iteration= 25	 chi2= 468.065029	 time= 0.0353063	 cumTime= 0.955856	 edges= 6843	 schur= 0	 lambda= 0.538761	 levenbergIter= 1
iteration= 26	 chi2= 468.065029	 time= 0.0350386	 cumTime= 0.990895	 edges= 6843	 schur= 0	 lambda= 0.359174	 levenbergIter= 1
iteration= 27	 chi2= 468.065029	 time= 0.0351134	 cumTime= 1.02601	 edges= 6843	 schur= 0	 lambda= 0.239449	 levenbergIter= 1
iteration= 28	 chi2= 468.065029	 time= 0.0351127	 cumTime= 1.06112	 edges= 6843	 schur= 0	 lambda= 0.159633	 levenbergIter= 1
iteration= 29	 chi2= 468.065029	 time= 0.034973	 cumTime= 1.09609	 edges= 6843	 schur= 0	 lambda= 0.106422	 levenbergIter= 1
iteration= 30	 chi2= 468.065029	 time= 0.0390458	 cumTime= 1.13514	 edges= 6843	 schur= 0	 lambda= 0.141896	 levenbergIter= 2
iteration= 31	 chi2= 468.065028	 time= 0.0350559	 cumTime= 1.1702	 edges= 6843	 schur= 0	 lambda= 0.094597	 levenbergIter= 1
iteration= 32	 chi2= 468.065028	 time= 0.0349438	 cumTime= 1.20514	 edges= 6843	 schur= 0	 lambda= 0.063065	 levenbergIter= 1
iteration= 33	 chi2= 468.065028	 time= 0.0472793	 cumTime= 1.25242	 edges= 6843	 schur= 0	 lambda= 2.690767	 levenbergIter= 4
iteration= 34	 chi2= 468.065028	 time= 0.0349359	 cumTime= 1.28735	 edges= 6843	 schur= 0	 lambda= 1.793845	 levenbergIter= 1
iteration= 35	 chi2= 468.065028	 time= 0.0350663	 cumTime= 1.32242	 edges= 6843	 schur= 0	 lambda= 1.195896	 levenbergIter= 1
iteration= 36	 chi2= 468.065028	 time= 0.0349947	 cumTime= 1.35742	 edges= 6843	 schur= 0	 lambda= 0.797264	 levenbergIter= 1
iteration= 37	 chi2= 468.065028	 time= 0.0350037	 cumTime= 1.39242	 edges= 6843	 schur= 0	 lambda= 0.531510	 levenbergIter= 1
iteration= 38	 chi2= 468.065028	 time= 0.0471563	 cumTime= 1.43958	 edges= 6843	 schur= 0	 lambda= 22.677739	 levenbergIter= 4
iteration= 39	 chi2= 468.065028	 time= 0.0349358	 cumTime= 1.47451	 edges= 6843	 schur= 0	 lambda= 15.118493	 levenbergIter= 1
iteration= 40	 chi2= 468.065028	 time= 0.0351167	 cumTime= 1.50963	 edges= 6843	 schur= 0	 lambda= 10.078995	 levenbergIter= 1
iteration= 41	 chi2= 468.065028	 time= 0.0350639	 cumTime= 1.54469	 edges= 6843	 schur= 0	 lambda= 6.719330	 levenbergIter= 1
iteration= 42	 chi2= 468.065028	 time= 0.0350967	 cumTime= 1.57979	 edges= 6843	 schur= 0	 lambda= 4.479553	 levenbergIter= 1
iteration= 43	 chi2= 468.065028	 time= 0.0350343	 cumTime= 1.61482	 edges= 6843	 schur= 0	 lambda= 2.986369	 levenbergIter= 1
iteration= 44	 chi2= 468.065028	 time= 0.0349	 cumTime= 1.64972	 edges= 6843	 schur= 0	 lambda= 1.990913	 levenbergIter= 1
iteration= 45	 chi2= 468.065028	 time= 0.0471932	 cumTime= 1.69692	 edges= 6843	 schur= 0	 lambda= 84.945606	 levenbergIter= 4
iteration= 46	 chi2= 468.065028	 time= 0.0350559	 cumTime= 1.73197	 edges= 6843	 schur= 0	 lambda= 56.630404	 levenbergIter= 1
iteration= 47	 chi2= 468.065028	 time= 0.035382	 cumTime= 1.76735	 edges= 6843	 schur= 0	 lambda= 37.753602	 levenbergIter= 1
iteration= 48	 chi2= 468.065028	 time= 0.0349866	 cumTime= 1.80234	 edges= 6843	 schur= 0	 lambda= 25.169068	 levenbergIter= 1
iteration= 49	 chi2= 468.065028	 time= 0.0351412	 cumTime= 1.83748	 edges= 6843	 schur= 0	 lambda= 16.779379	 levenbergIter= 1
iteration= 50	 chi2= 468.065028	 time= 0.0351712	 cumTime= 1.87265	 edges= 6843	 schur= 0	 lambda= 11.186253	 levenbergIter= 1
iteration= 51	 chi2= 468.065028	 time= 0.0349284	 cumTime= 1.90758	 edges= 6843	 schur= 0	 lambda= 7.457502	 levenbergIter= 1
iteration= 52	 chi2= 468.065028	 time= 0.0354512	 cumTime= 1.94303	 edges= 6843	 schur= 0	 lambda= 4.971668	 levenbergIter= 1
iteration= 53	 chi2= 468.065028	 time= 0.0350837	 cumTime= 1.97812	 edges= 6843	 schur= 0	 lambda= 3.314445	 levenbergIter= 1
iteration= 54	 chi2= 468.065028	 time= 0.0352127	 cumTime= 2.01333	 edges= 6843	 schur= 0	 lambda= 2.209630	 levenbergIter= 1
iteration= 55	 chi2= 468.065028	 time= 0.0349936	 cumTime= 2.04832	 edges= 6843	 schur= 0	 lambda= 1.473087	 levenbergIter= 1
iteration= 56	 chi2= 468.065028	 time= 0.0349023	 cumTime= 2.08323	 edges= 6843	 schur= 0	 lambda= 0.982058	 levenbergIter= 1
iteration= 57	 chi2= 468.065028	 time= 0.0470382	 cumTime= 2.13026	 edges= 6843	 schur= 0	 lambda= 41.901135	 levenbergIter= 4
iteration= 58	 chi2= 468.065028	 time= 0.0349818	 cumTime= 2.16525	 edges= 6843	 schur= 0	 lambda= 27.934090	 levenbergIter= 1
iteration= 59	 chi2= 468.065028	 time= 0.0349831	 cumTime= 2.20023	 edges= 6843	 schur= 0	 lambda= 18.622726	 levenbergIter= 1
iteration= 60	 chi2= 468.065028	 time= 0.0351551	 cumTime= 2.23538	 edges= 6843	 schur= 0	 lambda= 12.415151	 levenbergIter= 1
iteration= 61	 chi2= 468.065028	 time= 0.035053	 cumTime= 2.27044	 edges= 6843	 schur= 0	 lambda= 8.276767	 levenbergIter= 1
iteration= 62	 chi2= 468.065028	 time= 0.0350606	 cumTime= 2.3055	 edges= 6843	 schur= 0	 lambda= 5.517845	 levenbergIter= 1
iteration= 63	 chi2= 468.065028	 time= 0.0432361	 cumTime= 2.34873	 edges= 6843	 schur= 0	 lambda= 29.428506	 levenbergIter= 3
iteration= 64	 chi2= 468.065028	 time= 0.035078	 cumTime= 2.38381	 edges= 6843	 schur= 0	 lambda= 19.619004	 levenbergIter= 1
iteration= 65	 chi2= 468.065028	 time= 0.0431555	 cumTime= 2.42697	 edges= 6843	 schur= 0	 lambda= 104.634688	 levenbergIter= 3
iteration= 66	 chi2= 468.065028	 time= 0.0352503	 cumTime= 2.46222	 edges= 6843	 schur= 0	 lambda= 69.756459	 levenbergIter= 1
iteration= 67	 chi2= 468.065028	 time= 0.0350938	 cumTime= 2.49731	 edges= 6843	 schur= 0	 lambda= 46.504306	 levenbergIter= 1
iteration= 68	 chi2= 468.065028	 time= 0.0349346	 cumTime= 2.53225	 edges= 6843	 schur= 0	 lambda= 31.002871	 levenbergIter= 1
iteration= 69	 chi2= 468.065028	 time= 0.0350919	 cumTime= 2.56734	 edges= 6843	 schur= 0	 lambda= 20.668580	 levenbergIter= 1
iteration= 70	 chi2= 468.065028	 time= 0.0391162	 cumTime= 2.60645	 edges= 6843	 schur= 0	 lambda= 27.558107	 levenbergIter= 2
iteration= 71	 chi2= 468.065028	 time= 0.0349068	 cumTime= 2.64136	 edges= 6843	 schur= 0	 lambda= 18.372071	 levenbergIter= 1
iteration= 72	 chi2= 468.065028	 time= 0.0350233	 cumTime= 2.67638	 edges= 6843	 schur= 0	 lambda= 12.248048	 levenbergIter= 1
iteration= 73	 chi2= 468.065028	 time= 0.034933	 cumTime= 2.71132	 edges= 6843	 schur= 0	 lambda= 8.165365	 levenbergIter= 1
iteration= 74	 chi2= 468.065028	 time= 0.0390611	 cumTime= 2.75038	 edges= 6843	 schur= 0	 lambda= 10.887153	 levenbergIter= 2
iteration= 75	 chi2= 468.065028	 time= 0.0350384	 cumTime= 2.78542	 edges= 6843	 schur= 0	 lambda= 7.258102	 levenbergIter= 1
iteration= 76	 chi2= 468.065028	 time= 0.0349391	 cumTime= 2.82036	 edges= 6843	 schur= 0	 lambda= 4.838735	 levenbergIter= 1
iteration= 77	 chi2= 468.065028	 time= 0.0349793	 cumTime= 2.85533	 edges= 6843	 schur= 0	 lambda= 3.225823	 levenbergIter= 1
iteration= 78	 chi2= 468.065028	 time= 0.0350315	 cumTime= 2.89037	 edges= 6843	 schur= 0	 lambda= 2.150549	 levenbergIter= 1
iteration= 79	 chi2= 468.065028	 time= 0.0354239	 cumTime= 2.92579	 edges= 6843	 schur= 0	 lambda= 1.433699	 levenbergIter= 1
iteration= 80	 chi2= 468.065028	 time= 0.0470712	 cumTime= 2.97286	 edges= 6843	 schur= 0	 lambda= 61.171167	 levenbergIter= 4
iteration= 81	 chi2= 468.065028	 time= 0.0350588	 cumTime= 3.00792	 edges= 6843	 schur= 0	 lambda= 40.780778	 levenbergIter= 1
iteration= 82	 chi2= 468.065028	 time= 0.0349826	 cumTime= 3.0429	 edges= 6843	 schur= 0	 lambda= 27.187185	 levenbergIter= 1
iteration= 83	 chi2= 468.065028	 time= 0.0349392	 cumTime= 3.07784	 edges= 6843	 schur= 0	 lambda= 18.124790	 levenbergIter= 1
iteration= 84	 chi2= 468.065028	 time= 0.0349629	 cumTime= 3.1128	 edges= 6843	 schur= 0	 lambda= 12.083193	 levenbergIter= 1
iteration= 85	 chi2= 468.065028	 time= 0.0352133	 cumTime= 3.14802	 edges= 6843	 schur= 0	 lambda= 8.055462	 levenbergIter= 1
iteration= 86	 chi2= 468.065028	 time= 0.0351204	 cumTime= 3.18314	 edges= 6843	 schur= 0	 lambda= 5.370308	 levenbergIter= 1
iteration= 87	 chi2= 468.065028	 time= 0.0430952	 cumTime= 3.22623	 edges= 6843	 schur= 0	 lambda= 28.641644	 levenbergIter= 3
iteration= 88	 chi2= 468.065028	 time= 0.0352413	 cumTime= 3.26147	 edges= 6843	 schur= 0	 lambda= 19.094429	 levenbergIter= 1
iteration= 89	 chi2= 468.065028	 time= 0.0351148	 cumTime= 3.29659	 edges= 6843	 schur= 0	 lambda= 12.729619	 levenbergIter= 1
iteration= 90	 chi2= 468.065028	 time= 0.0433217	 cumTime= 3.33991	 edges= 6843	 schur= 0	 lambda= 67.891303	 levenbergIter= 3
iteration= 91	 chi2= 468.065028	 time= 0.0350147	 cumTime= 3.37493	 edges= 6843	 schur= 0	 lambda= 45.260869	 levenbergIter= 1
iteration= 92	 chi2= 468.065028	 time= 0.0431807	 cumTime= 3.41811	 edges= 6843	 schur= 0	 lambda= 241.391301	 levenbergIter= 3
iteration= 93	 chi2= 468.065028	 time= 0.0349405	 cumTime= 3.45305	 edges= 6843	 schur= 0	 lambda= 160.927534	 levenbergIter= 1
iteration= 94	 chi2= 468.065028	 time= 0.0349453	 cumTime= 3.48799	 edges= 6843	 schur= 0	 lambda= 107.285023	 levenbergIter= 1
iteration= 95	 chi2= 468.065028	 time= 0.0390688	 cumTime= 3.52706	 edges= 6843	 schur= 0	 lambda= 143.046697	 levenbergIter= 2
iteration= 96	 chi2= 468.065028	 time= 0.0350537	 cumTime= 3.56212	 edges= 6843	 schur= 0	 lambda= 95.364465	 levenbergIter= 1
iteration= 97	 chi2= 468.065028	 time= 0.0429644	 cumTime= 3.60508	 edges= 6843	 schur= 0	 lambda= 508.610478	 levenbergIter= 3
iteration= 98	 chi2= 468.065028	 time= 0.0350958	 cumTime= 3.64018	 edges= 6843	 schur= 0	 lambda= 339.073652	 levenbergIter= 1
iteration= 99	 chi2= 468.065028	 time= 0.0350706	 cumTime= 3.67525	 edges= 6843	 schur= 0	 lambda= 226.049101	 levenbergIter= 1
I0114 13:20:39.189853 421782 optimization.cc:255] RTK 误差:
I0114 13:20:39.189865 421782 optimization.cc:256] RTK 平移误差:数量: 1143, 均值: 5.423604, 中位数: 0.064771, 0.1分位: 0.008310, 0.9分位: 0.498921, 0.95分位:32.240261, 最大值: 173.001502, 阈值: 1.000000
I0114 13:20:39.189934 421782 optimization.cc:257] lidar 误差:数量: 5700, 均值: 0.002259, 中位数: 0.000477, 0.1分位: 0.000013, 0.9分位: 0.007259, 0.95分位:0.011946, 最大值: 0.028087, 阈值: 0.000000
I0114 13:20:39.191107 421782 optimization.cc:258] loop 误差:
I0114 13:20:39.191128 421782 optimization.cc:278] gnss outlier: 103/1143
I0114 13:20:39.191130 421782 optimization.cc:283] loop outlier: 0/0
iteration= 0	 chi2= 110.934465	 time= 0.0470475	 cumTime= 0.0470475	 edges= 6740	 schur= 0	 lambda= 13.285428	 levenbergIter= 1
iteration= 1	 chi2= 110.909744	 time= 0.0351188	 cumTime= 0.0821663	 edges= 6740	 schur= 0	 lambda= 4.428476	 levenbergIter= 1
iteration= 2	 chi2= 110.870717	 time= 0.0348684	 cumTime= 0.117035	 edges= 6740	 schur= 0	 lambda= 1.476159	 levenbergIter= 1
iteration= 3	 chi2= 110.825776	 time= 0.0349312	 cumTime= 0.151966	 edges= 6740	 schur= 0	 lambda= 0.492053	 levenbergIter= 1
iteration= 4	 chi2= 110.792967	 time= 0.0351164	 cumTime= 0.187082	 edges= 6740	 schur= 0	 lambda= 0.164018	 levenbergIter= 1
iteration= 5	 chi2= 110.779861	 time= 0.0354022	 cumTime= 0.222484	 edges= 6740	 schur= 0	 lambda= 0.061012	 levenbergIter= 1
iteration= 6	 chi2= 110.777612	 time= 0.0354614	 cumTime= 0.257946	 edges= 6740	 schur= 0	 lambda= 0.040675	 levenbergIter= 1
iteration= 7	 chi2= 110.777317	 time= 0.0350879	 cumTime= 0.293034	 edges= 6740	 schur= 0	 lambda= 0.027116	 levenbergIter= 1
iteration= 8	 chi2= 110.777119	 time= 0.0350583	 cumTime= 0.328092	 edges= 6740	 schur= 0	 lambda= 0.018078	 levenbergIter= 1
iteration= 9	 chi2= 110.776952	 time= 0.0351737	 cumTime= 0.363266	 edges= 6740	 schur= 0	 lambda= 0.012052	 levenbergIter= 1
iteration= 10	 chi2= 110.776786	 time= 0.035232	 cumTime= 0.398498	 edges= 6740	 schur= 0	 lambda= 0.008034	 levenbergIter= 1
iteration= 11	 chi2= 110.776656	 time= 0.0352243	 cumTime= 0.433722	 edges= 6740	 schur= 0	 lambda= 0.005356	 levenbergIter= 1
iteration= 12	 chi2= 110.776583	 time= 0.035121	 cumTime= 0.468843	 edges= 6740	 schur= 0	 lambda= 0.003571	 levenbergIter= 1
iteration= 13	 chi2= 110.776518	 time= 0.0351649	 cumTime= 0.504008	 edges= 6740	 schur= 0	 lambda= 0.002381	 levenbergIter= 1
iteration= 14	 chi2= 110.776499	 time= 0.035041	 cumTime= 0.539049	 edges= 6740	 schur= 0	 lambda= 0.001587	 levenbergIter= 1
iteration= 15	 chi2= 110.776499	 time= 0.0470622	 cumTime= 0.586111	 edges= 6740	 schur= 0	 lambda= 0.067715	 levenbergIter= 4
iteration= 16	 chi2= 110.776499	 time= 0.0351206	 cumTime= 0.621232	 edges= 6740	 schur= 0	 lambda= 0.045143	 levenbergIter= 1
iteration= 17	 chi2= 110.776499	 time= 0.0349234	 cumTime= 0.656155	 edges= 6740	 schur= 0	 lambda= 0.030095	 levenbergIter= 1
iteration= 18	 chi2= 110.776499	 time= 0.0351566	 cumTime= 0.691312	 edges= 6740	 schur= 0	 lambda= 0.020064	 levenbergIter= 1
iteration= 19	 chi2= 110.776499	 time= 0.0391649	 cumTime= 0.730476	 edges= 6740	 schur= 0	 lambda= 0.026751	 levenbergIter= 2
iteration= 20	 chi2= 110.776499	 time= 0.0431754	 cumTime= 0.773652	 edges= 6740	 schur= 0	 lambda= 0.142674	 levenbergIter= 3
iteration= 21	 chi2= 110.776499	 time= 0.0388819	 cumTime= 0.812534	 edges= 6740	 schur= 0	 lambda= 0.190232	 levenbergIter= 2
iteration= 22	 chi2= 110.776498	 time= 0.0355803	 cumTime= 0.848114	 edges= 6740	 schur= 0	 lambda= 0.126822	 levenbergIter= 1
iteration= 23	 chi2= 110.776498	 time= 0.0352904	 cumTime= 0.883404	 edges= 6740	 schur= 0	 lambda= 0.084548	 levenbergIter= 1
iteration= 24	 chi2= 110.776498	 time= 0.0350743	 cumTime= 0.918479	 edges= 6740	 schur= 0	 lambda= 0.056365	 levenbergIter= 1
iteration= 25	 chi2= 110.776498	 time= 0.0432064	 cumTime= 0.961685	 edges= 6740	 schur= 0	 lambda= 0.300614	 levenbergIter= 3
iteration= 26	 chi2= 110.776498	 time= 0.0350856	 cumTime= 0.996771	 edges= 6740	 schur= 0	 lambda= 0.200409	 levenbergIter= 1
iteration= 27	 chi2= 110.776498	 time= 0.0511913	 cumTime= 1.04796	 edges= 6740	 schur= 0	 lambda= 136.812830	 levenbergIter= 5
iteration= 28	 chi2= 110.776498	 time= 0.0352956	 cumTime= 1.08326	 edges= 6740	 schur= 0	 lambda= 91.208553	 levenbergIter= 1
iteration= 29	 chi2= 110.776498	 time= 0.0350566	 cumTime= 1.11831	 edges= 6740	 schur= 0	 lambda= 60.805702	 levenbergIter= 1
iteration= 30	 chi2= 110.776498	 time= 0.0393775	 cumTime= 1.15769	 edges= 6740	 schur= 0	 lambda= 81.074269	 levenbergIter= 2
iteration= 31	 chi2= 110.776498	 time= 0.0350615	 cumTime= 1.19275	 edges= 6740	 schur= 0	 lambda= 54.049513	 levenbergIter= 1
iteration= 32	 chi2= 110.776498	 time= 0.0349912	 cumTime= 1.22774	 edges= 6740	 schur= 0	 lambda= 36.033009	 levenbergIter= 1
iteration= 33	 chi2= 110.776498	 time= 0.0349487	 cumTime= 1.26269	 edges= 6740	 schur= 0	 lambda= 24.022006	 levenbergIter= 1
iteration= 34	 chi2= 110.776498	 time= 0.0350243	 cumTime= 1.29772	 edges= 6740	 schur= 0	 lambda= 16.014671	 levenbergIter= 1
iteration= 35	 chi2= 110.776498	 time= 0.0429543	 cumTime= 1.34067	 edges= 6740	 schur= 0	 lambda= 85.411576	 levenbergIter= 3
iteration= 36	 chi2= 110.776498	 time= 0.0351099	 cumTime= 1.37578	 edges= 6740	 schur= 0	 lambda= 56.941051	 levenbergIter= 1
iteration= 37	 chi2= 110.776498	 time= 0.0350871	 cumTime= 1.41087	 edges= 6740	 schur= 0	 lambda= 37.960700	 levenbergIter= 1
iteration= 38	 chi2= 110.776498	 time= 0.0352381	 cumTime= 1.44611	 edges= 6740	 schur= 0	 lambda= 25.307134	 levenbergIter= 1
iteration= 39	 chi2= 110.776498	 time= 0.043321	 cumTime= 1.48943	 edges= 6740	 schur= 0	 lambda= 134.971379	 levenbergIter= 3
iteration= 40	 chi2= 110.776498	 time= 0.0352493	 cumTime= 1.52468	 edges= 6740	 schur= 0	 lambda= 89.980920	 levenbergIter= 1
iteration= 41	 chi2= 110.776498	 time= 0.0353187	 cumTime= 1.56	 edges= 6740	 schur= 0	 lambda= 59.987280	 levenbergIter= 1
iteration= 42	 chi2= 110.776498	 time= 0.0394095	 cumTime= 1.59941	 edges= 6740	 schur= 0	 lambda= 79.983040	 levenbergIter= 2
iteration= 43	 chi2= 110.776498	 time= 0.0350835	 cumTime= 1.63449	 edges= 6740	 schur= 0	 lambda= 53.322026	 levenbergIter= 1
iteration= 44	 chi2= 110.776498	 time= 0.0397917	 cumTime= 1.67428	 edges= 6740	 schur= 0	 lambda= 71.096035	 levenbergIter= 2
iteration= 45	 chi2= 110.776498	 time= 0.0351542	 cumTime= 1.70943	 edges= 6740	 schur= 0	 lambda= 47.397357	 levenbergIter= 1
iteration= 46	 chi2= 110.776498	 time= 0.0349756	 cumTime= 1.74441	 edges= 6740	 schur= 0	 lambda= 31.598238	 levenbergIter= 1
iteration= 47	 chi2= 110.776498	 time= 0.0350925	 cumTime= 1.7795	 edges= 6740	 schur= 0	 lambda= 21.065492	 levenbergIter= 1
iteration= 48	 chi2= 110.776498	 time= 0.0351852	 cumTime= 1.81469	 edges= 6740	 schur= 0	 lambda= 14.043661	 levenbergIter= 1
iteration= 49	 chi2= 110.776498	 time= 0.0350873	 cumTime= 1.84978	 edges= 6740	 schur= 0	 lambda= 9.362441	 levenbergIter= 1
iteration= 50	 chi2= 110.776498	 time= 0.0352412	 cumTime= 1.88502	 edges= 6740	 schur= 0	 lambda= 6.241627	 levenbergIter= 1
iteration= 51	 chi2= 110.776498	 time= 0.0431349	 cumTime= 1.92815	 edges= 6740	 schur= 0	 lambda= 33.288679	 levenbergIter= 3
iteration= 52	 chi2= 110.776498	 time= 0.0351016	 cumTime= 1.96325	 edges= 6740	 schur= 0	 lambda= 22.192452	 levenbergIter= 1
iteration= 53	 chi2= 110.776498	 time= 0.0353896	 cumTime= 1.99864	 edges= 6740	 schur= 0	 lambda= 14.794968	 levenbergIter= 1
iteration= 54	 chi2= 110.776498	 time= 0.0431881	 cumTime= 2.04183	 edges= 6740	 schur= 0	 lambda= 78.906497	 levenbergIter= 3
iteration= 55	 chi2= 110.776498	 time= 0.0359193	 cumTime= 2.07775	 edges= 6740	 schur= 0	 lambda= 52.604332	 levenbergIter= 1
iteration= 56	 chi2= 110.776498	 time= 0.0432479	 cumTime= 2.121	 edges= 6740	 schur= 0	 lambda= 280.556435	 levenbergIter= 3
iteration= 57	 chi2= 110.776498	 time= 0.0352556	 cumTime= 2.15625	 edges= 6740	 schur= 0	 lambda= 187.037624	 levenbergIter= 1
iteration= 58	 chi2= 110.776498	 time= 0.0352096	 cumTime= 2.19146	 edges= 6740	 schur= 0	 lambda= 124.691749	 levenbergIter= 1
iteration= 59	 chi2= 110.776498	 time= 0.0357311	 cumTime= 2.22719	 edges= 6740	 schur= 0	 lambda= 83.127833	 levenbergIter= 1
iteration= 60	 chi2= 110.776498	 time= 0.0352255	 cumTime= 2.26242	 edges= 6740	 schur= 0	 lambda= 55.418555	 levenbergIter= 1
iteration= 61	 chi2= 110.776498	 time= 0.0356248	 cumTime= 2.29804	 edges= 6740	 schur= 0	 lambda= 36.945703	 levenbergIter= 1
iteration= 62	 chi2= 110.776498	 time= 0.0355421	 cumTime= 2.33359	 edges= 6740	 schur= 0	 lambda= 24.630469	 levenbergIter= 1
iteration= 63	 chi2= 110.776498	 time= 0.0437838	 cumTime= 2.37737	 edges= 6740	 schur= 0	 lambda= 131.362501	 levenbergIter= 3
iteration= 64	 chi2= 110.776498	 time= 0.0355388	 cumTime= 2.41291	 edges= 6740	 schur= 0	 lambda= 87.575001	 levenbergIter= 1
iteration= 65	 chi2= 110.776498	 time= 0.0438357	 cumTime= 2.45674	 edges= 6740	 schur= 0	 lambda= 467.066670	 levenbergIter= 3
iteration= 66	 chi2= 110.776498	 time= 0.0354844	 cumTime= 2.49223	 edges= 6740	 schur= 0	 lambda= 311.377780	 levenbergIter= 1
iteration= 67	 chi2= 110.776498	 time= 0.0351674	 cumTime= 2.5274	 edges= 6740	 schur= 0	 lambda= 207.585187	 levenbergIter= 1
iteration= 68	 chi2= 110.776498	 time= 0.035127	 cumTime= 2.56252	 edges= 6740	 schur= 0	 lambda= 138.390125	 levenbergIter= 1
iteration= 69	 chi2= 110.776498	 time= 0.0393006	 cumTime= 2.60182	 edges= 6740	 schur= 0	 lambda= 184.520166	 levenbergIter= 2
iteration= 70	 chi2= 110.776498	 time= 0.0391779	 cumTime= 2.641	 edges= 6740	 schur= 0	 lambda= 246.026888	 levenbergIter= 2
iteration= 71	 chi2= 110.776498	 time= 0.0433099	 cumTime= 2.68431	 edges= 6740	 schur= 0	 lambda= 1312.143403	 levenbergIter= 3
iteration= 72	 chi2= 110.776498	 time= 0.035241	 cumTime= 2.71955	 edges= 6740	 schur= 0	 lambda= 874.762269	 levenbergIter= 1
iteration= 73	 chi2= 110.776498	 time= 0.035148	 cumTime= 2.7547	 edges= 6740	 schur= 0	 lambda= 583.174846	 levenbergIter= 1
iteration= 74	 chi2= 110.776498	 time= 0.0355041	 cumTime= 2.79021	 edges= 6740	 schur= 0	 lambda= 388.783231	 levenbergIter= 1
iteration= 75	 chi2= 110.776498	 time= 0.0353253	 cumTime= 2.82553	 edges= 6740	 schur= 0	 lambda= 259.188820	 levenbergIter= 1
iteration= 76	 chi2= 110.776498	 time= 0.0353136	 cumTime= 2.86084	 edges= 6740	 schur= 0	 lambda= 172.792547	 levenbergIter= 1
iteration= 77	 chi2= 110.776498	 time= 0.0435316	 cumTime= 2.90438	 edges= 6740	 schur= 0	 lambda= 921.560250	 levenbergIter= 3
iteration= 78	 chi2= 110.776498	 time= 0.0465395	 cumTime= 2.95092	 edges= 6740	 schur= 0	 lambda= 4914.988002	 levenbergIter= 3
iteration= 79	 chi2= 110.776498	 time= 0.0358473	 cumTime= 2.98676	 edges= 6740	 schur= 0	 lambda= 3276.658668	 levenbergIter= 1
iteration= 80	 chi2= 110.776498	 time= 0.0396393	 cumTime= 3.0264	 edges= 6740	 schur= 0	 lambda= 4368.878224	 levenbergIter= 2
iteration= 81	 chi2= 110.776498	 time= 0.0353733	 cumTime= 3.06178	 edges= 6740	 schur= 0	 lambda= 2912.585483	 levenbergIter= 1
iteration= 82	 chi2= 110.776498	 time= 0.0397982	 cumTime= 3.10157	 edges= 6740	 schur= 0	 lambda= 3883.447310	 levenbergIter= 2
iteration= 83	 chi2= 110.776498	 time= 0.039892	 cumTime= 3.14147	 edges= 6740	 schur= 0	 lambda= 5177.929747	 levenbergIter= 2
iteration= 84	 chi2= 110.776498	 time= 0.0355231	 cumTime= 3.17699	 edges= 6740	 schur= 0	 lambda= 3451.953165	 levenbergIter= 1
iteration= 85	 chi2= 110.776498	 time= 0.0438638	 cumTime= 3.22085	 edges= 6740	 schur= 0	 lambda= 18410.416878	 levenbergIter= 3
iteration= 86	 chi2= 110.776498	 time= 0.0437571	 cumTime= 3.26461	 edges= 6740	 schur= 0	 lambda= 98188.890014	 levenbergIter= 3
iteration= 87	 chi2= 110.776498	 time= 0.0354665	 cumTime= 3.30008	 edges= 6740	 schur= 0	 lambda= 65459.260010	 levenbergIter= 1
iteration= 88	 chi2= 110.776498	 time= 0.0390789	 cumTime= 3.33915	 edges= 6740	 schur= 0	 lambda= 87279.013346	 levenbergIter= 2
iteration= 89	 chi2= 110.776498	 time= 0.0391281	 cumTime= 3.37828	 edges= 6740	 schur= 0	 lambda= 116372.017795	 levenbergIter= 2
iteration= 90	 chi2= 110.776498	 time= 0.0392514	 cumTime= 3.41753	 edges= 6740	 schur= 0	 lambda= 155162.690393	 levenbergIter= 2
iteration= 91	 chi2= 110.776498	 time= 0.0388398	 cumTime= 3.45637	 edges= 6740	 schur= 0	 lambda= 206883.587191	 levenbergIter= 2
iteration= 92	 chi2= 110.776498	 time= 0.0432031	 cumTime= 3.49958	 edges= 6740	 schur= 0	 lambda= 1103379.131683	 levenbergIter= 3
iteration= 93	 chi2= 110.776498	 time= 0.0431585	 cumTime= 3.54274	 edges= 6740	 schur= 0	 lambda= 5884688.702312	 levenbergIter= 3
iteration= 94	 chi2= 110.776498	 time= 0.0554472	 cumTime= 3.59818	 edges= 6740	 schur= 0	 lambda= 128552986264.900513	 levenbergIter= 6
iteration= 95	 chi2= 110.776498	 time= 0.0509725	 cumTime= 3.64916	 edges= 6740	 schur= 0	 lambda= 87758838623505.406250	 levenbergIter= 5
iteration= 96	 chi2= 110.776498	 time= 0.0730046	 cumTime= 3.72216	 edges= 6740	 schur= 0	 lambda= 3161845383386291517557101821952.000000	 levenbergIter= 10
I0114 13:20:43.021499 421782 optimization.cc:255] RTK 误差:
I0114 13:20:43.021515 421782 optimization.cc:256] RTK 平移误差:数量: 1040, 均值: 0.091952, 中位数: 0.046066, 0.1分位: 0.007426, 0.9分位: 0.227438, 0.95分位:0.305799, 最大值: 0.964747, 阈值: 1.000000
I0114 13:20:43.021579 421782 optimization.cc:257] lidar 误差:数量: 5700, 均值: 0.002657, 中位数: 0.000573, 0.1分位: 0.000015, 0.9分位: 0.008337, 0.95分位:0.013616, 最大值: 0.032128, 阈值: 0.000000
I0114 13:20:43.022814 421782 optimization.cc:258] loop 误差:
I0114 13:20:43.061812 421782 optimization.cc:306] med error: 0.496898
I0114 13:20:43.108528 421782 optimization.cc:96] done
wu@WP:~/slam_in_autonomous_driving/data/ch9$ g2o_viewer before.g2o

wu@WP:~/slam_in_autonomous_driving/data/ch9$ g2o_viewer after.g2o

         ② 第二阶段优化结果

        注意:完成回环检测后才进行第二阶段优化。

wu@WP:~/slam_in_autonomous_driving/bin$ ./run_optimization --stage=2

I0114 14:47:06.440253 425119 run_optimization.cc:23] testing optimization
I0114 14:47:06.444443 425119 keyframe.cc:78] Loaded kfs: 1143
I0114 14:47:06.444453 425119 optimization.cc:52] keyframes: 1143
I0114 14:47:06.444612 425119 optimization.cc:66] TBG = 
000001 000000 000000 000000
000000 000001 000000 000.24
000000 000000 000001 -0.283
000000 000000 000000 000001
I0114 14:47:06.444928 425119 optimization.cc:401] loaded loops: 249
I0114 14:47:06.444943 425119 optimization.cc:76] running optimization on stage 2
I0114 14:47:06.445127 425119 optimization.cc:146] vertex: 1143
I0114 14:47:06.445129 425119 optimization.cc:158] Info of rtk trans: 000.25 000.25 0.0025
I0114 14:47:06.445425 425119 optimization.cc:191] gnss edges: 0, 1143
I0114 14:47:06.447690 425119 optimization.cc:221] lidar edges: 5700
I0114 14:47:06.498154 425119 optimization.cc:85] RTK 误差:
I0114 14:47:06.498178 425119 optimization.cc:86] RTK 平移误差:数量: 1143, 均值: 0.054123, 中位数: 0.000632, 0.1分位: 0.000078, 0.9分位: 0.004924, 0.95分位:0.321209, 最大值: 1.727218, 阈值: 1.000000
I0114 14:47:06.498303 425119 optimization.cc:87] lidar 误差:数量: 5700, 均值: 0.002657, 中位数: 0.000573, 0.1分位: 0.000015, 0.9分位: 0.008335, 0.95分位:0.013617, 最大值: 0.032125, 阈值: 0.000000
iteration= 0	 chi2= 732.273825	 time= 0.0669518	 cumTime= 0.0669518	 edges= 7092	 schur= 0	 lambda= 14.600698	 levenbergIter= 1
iteration= 1	 chi2= 692.103366	 time= 0.0427196	 cumTime= 0.109671	 edges= 7092	 schur= 0	 lambda= 4.866899	 levenbergIter= 1
iteration= 2	 chi2= 683.780205	 time= 0.044161	 cumTime= 0.153832	 edges= 7092	 schur= 0	 lambda= 1.622300	 levenbergIter= 1
iteration= 3	 chi2= 676.140472	 time= 0.042287	 cumTime= 0.196119	 edges= 7092	 schur= 0	 lambda= 0.540767	 levenbergIter= 1
iteration= 4	 chi2= 668.287330	 time= 0.0447868	 cumTime= 0.240906	 edges= 7092	 schur= 0	 lambda= 0.180256	 levenbergIter= 1
iteration= 5	 chi2= 663.433612	 time= 0.042204	 cumTime= 0.28311	 edges= 7092	 schur= 0	 lambda= 0.060085	 levenbergIter= 1
iteration= 6	 chi2= 661.863390	 time= 0.0435874	 cumTime= 0.326697	 edges= 7092	 schur= 0	 lambda= 0.020028	 levenbergIter= 1
iteration= 7	 chi2= 661.592309	 time= 0.0476941	 cumTime= 0.374392	 edges= 7092	 schur= 0	 lambda= 0.006676	 levenbergIter= 1
iteration= 8	 chi2= 661.365199	 time= 0.0439028	 cumTime= 0.418294	 edges= 7092	 schur= 0	 lambda= 0.002225	 levenbergIter= 1
iteration= 9	 chi2= 661.154271	 time= 0.0424439	 cumTime= 0.460738	 edges= 7092	 schur= 0	 lambda= 0.000742	 levenbergIter= 1
iteration= 10	 chi2= 661.091033	 time= 0.044019	 cumTime= 0.504757	 edges= 7092	 schur= 0	 lambda= 0.000257	 levenbergIter= 1
iteration= 11	 chi2= 661.085559	 time= 0.0424286	 cumTime= 0.547186	 edges= 7092	 schur= 0	 lambda= 0.000171	 levenbergIter= 1
iteration= 12	 chi2= 661.084967	 time= 0.0433414	 cumTime= 0.590527	 edges= 7092	 schur= 0	 lambda= 0.000114	 levenbergIter= 1
iteration= 13	 chi2= 661.082050	 time= 0.0438021	 cumTime= 0.634329	 edges= 7092	 schur= 0	 lambda= 0.000076	 levenbergIter= 1
iteration= 14	 chi2= 661.081452	 time= 0.0514515	 cumTime= 0.685781	 edges= 7092	 schur= 0	 lambda= 0.000102	 levenbergIter= 2
iteration= 15	 chi2= 661.080845	 time= 0.059497	 cumTime= 0.745278	 edges= 7092	 schur= 0	 lambda= 0.000541	 levenbergIter= 3
iteration= 16	 chi2= 661.080815	 time= 0.0684689	 cumTime= 0.813747	 edges= 7092	 schur= 0	 lambda= 0.023099	 levenbergIter= 4
iteration= 17	 chi2= 661.080765	 time= 0.0422402	 cumTime= 0.855987	 edges= 7092	 schur= 0	 lambda= 0.015399	 levenbergIter= 1
iteration= 18	 chi2= 661.080750	 time= 0.0428142	 cumTime= 0.898801	 edges= 7092	 schur= 0	 lambda= 0.010266	 levenbergIter= 1
iteration= 19	 chi2= 661.080717	 time= 0.0429474	 cumTime= 0.941749	 edges= 7092	 schur= 0	 lambda= 0.006844	 levenbergIter= 1
iteration= 20	 chi2= 661.080716	 time= 0.0430636	 cumTime= 0.984812	 edges= 7092	 schur= 0	 lambda= 0.004563	 levenbergIter= 1
iteration= 21	 chi2= 661.080708	 time= 0.0417634	 cumTime= 1.02658	 edges= 7092	 schur= 0	 lambda= 0.003042	 levenbergIter= 1
iteration= 22	 chi2= 661.080707	 time= 0.0790561	 cumTime= 1.10563	 edges= 7092	 schur= 0	 lambda= 2.076534	 levenbergIter= 5
iteration= 23	 chi2= 661.080707	 time= 0.0417019	 cumTime= 1.14733	 edges= 7092	 schur= 0	 lambda= 1.384356	 levenbergIter= 1
iteration= 24	 chi2= 661.080707	 time= 0.0437479	 cumTime= 1.19108	 edges= 7092	 schur= 0	 lambda= 0.922904	 levenbergIter= 1
iteration= 25	 chi2= 661.080707	 time= 0.0679209	 cumTime= 1.259	 edges= 7092	 schur= 0	 lambda= 39.377243	 levenbergIter= 4
iteration= 26	 chi2= 661.080707	 time= 0.0683598	 cumTime= 1.32736	 edges= 7092	 schur= 0	 lambda= 1680.095684	 levenbergIter= 4
iteration= 27	 chi2= 661.080707	 time= 0.0412889	 cumTime= 1.36865	 edges= 7092	 schur= 0	 lambda= 1120.063789	 levenbergIter= 1
iteration= 28	 chi2= 661.080707	 time= 0.0605974	 cumTime= 1.42925	 edges= 7092	 schur= 0	 lambda= 5973.673543	 levenbergIter= 3
iteration= 29	 chi2= 661.080707	 time= 0.0507893	 cumTime= 1.48004	 edges= 7092	 schur= 0	 lambda= 7964.898058	 levenbergIter= 2
iteration= 30	 chi2= 661.080707	 time= 0.0432925	 cumTime= 1.52333	 edges= 7092	 schur= 0	 lambda= 5309.932038	 levenbergIter= 1
iteration= 31	 chi2= 661.080707	 time= 0.0418494	 cumTime= 1.56518	 edges= 7092	 schur= 0	 lambda= 3539.954692	 levenbergIter= 1
iteration= 32	 chi2= 661.080707	 time= 0.0520767	 cumTime= 1.61726	 edges= 7092	 schur= 0	 lambda= 4719.939590	 levenbergIter= 2
iteration= 33	 chi2= 661.080707	 time= 0.0429237	 cumTime= 1.66018	 edges= 7092	 schur= 0	 lambda= 3146.626393	 levenbergIter= 1
iteration= 34	 chi2= 661.080707	 time= 0.0599151	 cumTime= 1.7201	 edges= 7092	 schur= 0	 lambda= 16782.007430	 levenbergIter= 3
iteration= 35	 chi2= 661.080707	 time= 0.0419952	 cumTime= 1.76209	 edges= 7092	 schur= 0	 lambda= 11188.004953	 levenbergIter= 1
iteration= 36	 chi2= 661.080707	 time= 0.0519325	 cumTime= 1.81402	 edges= 7092	 schur= 0	 lambda= 14917.339938	 levenbergIter= 2
iteration= 37	 chi2= 661.080707	 time= 0.0427233	 cumTime= 1.85675	 edges= 7092	 schur= 0	 lambda= 9944.893292	 levenbergIter= 1
iteration= 38	 chi2= 661.080707	 time= 0.0515514	 cumTime= 1.9083	 edges= 7092	 schur= 0	 lambda= 13259.857723	 levenbergIter= 2
iteration= 39	 chi2= 661.080707	 time= 0.0514173	 cumTime= 1.95971	 edges= 7092	 schur= 0	 lambda= 17679.810297	 levenbergIter= 2
iteration= 40	 chi2= 661.080707	 time= 0.0605415	 cumTime= 2.02026	 edges= 7092	 schur= 0	 lambda= 94292.321583	 levenbergIter= 3
iteration= 41	 chi2= 661.080707	 time= 0.0431446	 cumTime= 2.0634	 edges= 7092	 schur= 0	 lambda= 62861.547722	 levenbergIter= 1
iteration= 42	 chi2= 661.080707	 time= 0.0520464	 cumTime= 2.11545	 edges= 7092	 schur= 0	 lambda= 83815.396963	 levenbergIter= 2
iteration= 43	 chi2= 661.080707	 time= 0.0529544	 cumTime= 2.1684	 edges= 7092	 schur= 0	 lambda= 111753.862617	 levenbergIter= 2
iteration= 44	 chi2= 661.080707	 time= 0.0520558	 cumTime= 2.22046	 edges= 7092	 schur= 0	 lambda= 149005.150156	 levenbergIter= 2
iteration= 45	 chi2= 661.080707	 time= 0.0427795	 cumTime= 2.26324	 edges= 7092	 schur= 0	 lambda= 99336.766771	 levenbergIter= 1
iteration= 46	 chi2= 661.080707	 time= 0.0538824	 cumTime= 2.31712	 edges= 7092	 schur= 0	 lambda= 132449.022361	 levenbergIter= 2
iteration= 47	 chi2= 661.080707	 time= 0.0512105	 cumTime= 2.36833	 edges= 7092	 schur= 0	 lambda= 176598.696481	 levenbergIter= 2
iteration= 48	 chi2= 661.080707	 time= 0.0517327	 cumTime= 2.42006	 edges= 7092	 schur= 0	 lambda= 235464.928641	 levenbergIter= 2
iteration= 49	 chi2= 661.080707	 time= 0.0512654	 cumTime= 2.47133	 edges= 7092	 schur= 0	 lambda= 313953.238189	 levenbergIter= 2
iteration= 50	 chi2= 661.080707	 time= 0.0433526	 cumTime= 2.51468	 edges= 7092	 schur= 0	 lambda= 209302.158792	 levenbergIter= 1
iteration= 51	 chi2= 661.080707	 time= 0.0484793	 cumTime= 2.56316	 edges= 7092	 schur= 0	 lambda= 279069.545056	 levenbergIter= 2
iteration= 52	 chi2= 661.080707	 time= 0.0483123	 cumTime= 2.61147	 edges= 7092	 schur= 0	 lambda= 372092.726742	 levenbergIter= 2
iteration= 53	 chi2= 661.080707	 time= 0.0404669	 cumTime= 2.65194	 edges= 7092	 schur= 0	 lambda= 248061.817828	 levenbergIter= 1
iteration= 54	 chi2= 661.080707	 time= 0.048849	 cumTime= 2.70079	 edges= 7092	 schur= 0	 lambda= 330749.090437	 levenbergIter= 2
iteration= 55	 chi2= 661.080707	 time= 0.0485885	 cumTime= 2.74938	 edges= 7092	 schur= 0	 lambda= 440998.787250	 levenbergIter= 2
iteration= 56	 chi2= 661.080707	 time= 0.0402083	 cumTime= 2.78959	 edges= 7092	 schur= 0	 lambda= 293999.191500	 levenbergIter= 1
iteration= 57	 chi2= 661.080707	 time= 0.0484342	 cumTime= 2.83802	 edges= 7092	 schur= 0	 lambda= 391998.922000	 levenbergIter= 2
iteration= 58	 chi2= 661.080707	 time= 0.0481979	 cumTime= 2.88622	 edges= 7092	 schur= 0	 lambda= 522665.229333	 levenbergIter= 2
iteration= 59	 chi2= 661.080707	 time= 0.0565311	 cumTime= 2.94275	 edges= 7092	 schur= 0	 lambda= 2787547.889776	 levenbergIter= 3
iteration= 60	 chi2= 661.080707	 time= 0.0483864	 cumTime= 2.99113	 edges= 7092	 schur= 0	 lambda= 3716730.519702	 levenbergIter= 2
iteration= 61	 chi2= 661.080707	 time= 0.080179	 cumTime= 3.07131	 edges= 7092	 schur= 0	 lambda= 81193217113.057663	 levenbergIter= 6
iteration= 62	 chi2= 661.080707	 time= 0.0563714	 cumTime= 3.12768	 edges= 7092	 schur= 0	 lambda= 433030491269.640869	 levenbergIter= 3
iteration= 63	 chi2= 661.080707	 time= 0.0646127	 cumTime= 3.1923	 edges= 7092	 schur= 0	 lambda= 18475967627504.675781	 levenbergIter= 4
iteration= 64	 chi2= 661.080707	 time= 0.0658315	 cumTime= 3.25813	 edges= 7092	 schur= 0	 lambda= 788307952106866.125000	 levenbergIter= 4
iteration= 65	 chi2= 661.080707	 time= 0.122538	 cumTime= 3.38067	 edges= 7092	 schur= 0	 lambda= 28401787194893448701701766774784.000000	 levenbergIter= 10
I0114 14:47:09.966687 425119 optimization.cc:255] RTK 误差:
I0114 14:47:09.966703 425119 optimization.cc:256] RTK 平移误差:数量: 1143, 均值: 0.054377, 中位数: 0.002057, 0.1分位: 0.000644, 0.9分位: 0.008998, 0.95分位:0.311381, 最大值: 1.703702, 阈值: 1.000000
I0114 14:47:09.966771 425119 optimization.cc:257] lidar 误差:数量: 5700, 均值: 0.009403, 中位数: 0.000008, 0.1分位: 0.000000, 0.9分位: 0.033417, 0.95分位:0.055681, 最大值: 0.286353, 阈值: 0.000000
I0114 14:47:09.967931 425119 optimization.cc:258] loop 误差:数量: 249, 均值: 2.421480, 中位数: 1.883298, 0.1分位: 0.652742, 0.9分位: 4.821146, 0.95分位:6.357756, 最大值: 16.565907, 阈值: 0.000000
I0114 14:47:09.968003 425119 optimization.cc:278] gnss outlier: 25/1143
I0114 14:47:09.968009 425119 optimization.cc:283] loop outlier: 21/249
iteration= 0	 chi2= 524.481274	 time= 0.0534861	 cumTime= 0.0534861	 edges= 7046	 schur= 0	 lambda= 14.659429	 levenbergIter= 1
iteration= 1	 chi2= 524.396160	 time= 0.0416237	 cumTime= 0.0951098	 edges= 7046	 schur= 0	 lambda= 4.886476	 levenbergIter= 1
iteration= 2	 chi2= 524.311806	 time= 0.0407585	 cumTime= 0.135868	 edges= 7046	 schur= 0	 lambda= 1.628825	 levenbergIter= 1
iteration= 3	 chi2= 524.201346	 time= 0.0401856	 cumTime= 0.176054	 edges= 7046	 schur= 0	 lambda= 0.542942	 levenbergIter= 1
iteration= 4	 chi2= 524.070422	 time= 0.0399105	 cumTime= 0.215964	 edges= 7046	 schur= 0	 lambda= 0.180981	 levenbergIter= 1
iteration= 5	 chi2= 523.976912	 time= 0.0406078	 cumTime= 0.256572	 edges= 7046	 schur= 0	 lambda= 0.060327	 levenbergIter= 1
iteration= 6	 chi2= 523.943490	 time= 0.0401059	 cumTime= 0.296678	 edges= 7046	 schur= 0	 lambda= 0.020109	 levenbergIter= 1
iteration= 7	 chi2= 523.931502	 time= 0.0400695	 cumTime= 0.336748	 edges= 7046	 schur= 0	 lambda= 0.006703	 levenbergIter= 1
iteration= 8	 chi2= 523.921460	 time= 0.0401983	 cumTime= 0.376946	 edges= 7046	 schur= 0	 lambda= 0.002234	 levenbergIter= 1
iteration= 9	 chi2= 523.911708	 time= 0.039986	 cumTime= 0.416932	 edges= 7046	 schur= 0	 lambda= 0.001490	 levenbergIter= 1
iteration= 10	 chi2= 523.909097	 time= 0.0400748	 cumTime= 0.457007	 edges= 7046	 schur= 0	 lambda= 0.000993	 levenbergIter= 1
iteration= 11	 chi2= 523.908841	 time= 0.0401001	 cumTime= 0.497107	 edges= 7046	 schur= 0	 lambda= 0.000662	 levenbergIter= 1
iteration= 12	 chi2= 523.908475	 time= 0.0402014	 cumTime= 0.537308	 edges= 7046	 schur= 0	 lambda= 0.000441	 levenbergIter= 1
iteration= 13	 chi2= 523.908462	 time= 0.0558095	 cumTime= 0.593118	 edges= 7046	 schur= 0	 lambda= 0.002354	 levenbergIter= 3
iteration= 14	 chi2= 523.908461	 time= 0.0712249	 cumTime= 0.664343	 edges= 7046	 schur= 0	 lambda= 1.606902	 levenbergIter= 5
iteration= 15	 chi2= 523.908459	 time= 0.0398896	 cumTime= 0.704232	 edges= 7046	 schur= 0	 lambda= 1.071268	 levenbergIter= 1
iteration= 16	 chi2= 523.908457	 time= 0.0400018	 cumTime= 0.744234	 edges= 7046	 schur= 0	 lambda= 0.714179	 levenbergIter= 1
iteration= 17	 chi2= 523.908456	 time= 0.0398928	 cumTime= 0.784127	 edges= 7046	 schur= 0	 lambda= 0.476119	 levenbergIter= 1
iteration= 18	 chi2= 523.908456	 time= 0.055664	 cumTime= 0.839791	 edges= 7046	 schur= 0	 lambda= 2.539302	 levenbergIter= 3
iteration= 19	 chi2= 523.908456	 time= 0.0401968	 cumTime= 0.879988	 edges= 7046	 schur= 0	 lambda= 1.692868	 levenbergIter= 1
iteration= 20	 chi2= 523.908456	 time= 0.0634764	 cumTime= 0.943464	 edges= 7046	 schur= 0	 lambda= 72.229036	 levenbergIter= 4
iteration= 21	 chi2= 523.908456	 time= 0.0401159	 cumTime= 0.98358	 edges= 7046	 schur= 0	 lambda= 48.152691	 levenbergIter= 1
iteration= 22	 chi2= 523.908456	 time= 0.040062	 cumTime= 1.02364	 edges= 7046	 schur= 0	 lambda= 32.101794	 levenbergIter= 1
iteration= 23	 chi2= 523.908456	 time= 0.0399811	 cumTime= 1.06362	 edges= 7046	 schur= 0	 lambda= 21.401196	 levenbergIter= 1
iteration= 24	 chi2= 523.908455	 time= 0.0634087	 cumTime= 1.12703	 edges= 7046	 schur= 0	 lambda= 913.117694	 levenbergIter= 4
iteration= 25	 chi2= 523.908455	 time= 0.0399583	 cumTime= 1.16699	 edges= 7046	 schur= 0	 lambda= 608.745129	 levenbergIter= 1
iteration= 26	 chi2= 523.908455	 time= 0.0401255	 cumTime= 1.20712	 edges= 7046	 schur= 0	 lambda= 405.830086	 levenbergIter= 1
iteration= 27	 chi2= 523.908455	 time= 0.0477113	 cumTime= 1.25483	 edges= 7046	 schur= 0	 lambda= 541.106782	 levenbergIter= 2
iteration= 28	 chi2= 523.908455	 time= 0.0399891	 cumTime= 1.29482	 edges= 7046	 schur= 0	 lambda= 360.737854	 levenbergIter= 1
iteration= 29	 chi2= 523.908455	 time= 0.0400652	 cumTime= 1.33488	 edges= 7046	 schur= 0	 lambda= 240.491903	 levenbergIter= 1
iteration= 30	 chi2= 523.908455	 time= 0.0556648	 cumTime= 1.39055	 edges= 7046	 schur= 0	 lambda= 1282.623482	 levenbergIter= 3
iteration= 31	 chi2= 523.908455	 time= 0.0399304	 cumTime= 1.43048	 edges= 7046	 schur= 0	 lambda= 855.082322	 levenbergIter= 1
iteration= 32	 chi2= 523.908455	 time= 0.048053	 cumTime= 1.47853	 edges= 7046	 schur= 0	 lambda= 1140.109762	 levenbergIter= 2
iteration= 33	 chi2= 523.908455	 time= 0.0399793	 cumTime= 1.51851	 edges= 7046	 schur= 0	 lambda= 760.073175	 levenbergIter= 1
iteration= 34	 chi2= 523.908455	 time= 0.0557636	 cumTime= 1.57427	 edges= 7046	 schur= 0	 lambda= 4053.723599	 levenbergIter= 3
iteration= 35	 chi2= 523.908455	 time= 0.0401256	 cumTime= 1.6144	 edges= 7046	 schur= 0	 lambda= 2702.482399	 levenbergIter= 1
iteration= 36	 chi2= 523.908455	 time= 0.0399855	 cumTime= 1.65438	 edges= 7046	 schur= 0	 lambda= 1801.654933	 levenbergIter= 1
iteration= 37	 chi2= 523.908455	 time= 0.0477881	 cumTime= 1.70217	 edges= 7046	 schur= 0	 lambda= 2402.206577	 levenbergIter= 2
iteration= 38	 chi2= 523.908455	 time= 0.0558878	 cumTime= 1.75806	 edges= 7046	 schur= 0	 lambda= 12811.768410	 levenbergIter= 3
iteration= 39	 chi2= 523.908455	 time= 0.0398665	 cumTime= 1.79793	 edges= 7046	 schur= 0	 lambda= 8541.178940	 levenbergIter= 1
iteration= 40	 chi2= 523.908455	 time= 0.0477839	 cumTime= 1.84571	 edges= 7046	 schur= 0	 lambda= 11388.238587	 levenbergIter= 2
iteration= 41	 chi2= 523.908455	 time= 0.0398962	 cumTime= 1.88561	 edges= 7046	 schur= 0	 lambda= 7592.159058	 levenbergIter= 1
iteration= 42	 chi2= 523.908455	 time= 0.0478328	 cumTime= 1.93344	 edges= 7046	 schur= 0	 lambda= 10122.878744	 levenbergIter= 2
iteration= 43	 chi2= 523.908455	 time= 0.0476778	 cumTime= 1.98112	 edges= 7046	 schur= 0	 lambda= 13497.171659	 levenbergIter= 2
iteration= 44	 chi2= 523.908455	 time= 0.0478666	 cumTime= 2.02898	 edges= 7046	 schur= 0	 lambda= 17996.228878	 levenbergIter= 2
iteration= 45	 chi2= 523.908455	 time= 0.0478792	 cumTime= 2.07686	 edges= 7046	 schur= 0	 lambda= 23994.971837	 levenbergIter= 2
iteration= 46	 chi2= 523.908455	 time= 0.048001	 cumTime= 2.12486	 edges= 7046	 schur= 0	 lambda= 31993.295783	 levenbergIter= 2
iteration= 47	 chi2= 523.908455	 time= 0.0478022	 cumTime= 2.17267	 edges= 7046	 schur= 0	 lambda= 42657.727711	 levenbergIter= 2
iteration= 48	 chi2= 523.908455	 time= 0.0476888	 cumTime= 2.22035	 edges= 7046	 schur= 0	 lambda= 56876.970281	 levenbergIter= 2
iteration= 49	 chi2= 523.908455	 time= 0.0480185	 cumTime= 2.26837	 edges= 7046	 schur= 0	 lambda= 75835.960375	 levenbergIter= 2
iteration= 50	 chi2= 523.908455	 time= 0.0478004	 cumTime= 2.31617	 edges= 7046	 schur= 0	 lambda= 101114.613833	 levenbergIter= 2
iteration= 51	 chi2= 523.908455	 time= 0.0479061	 cumTime= 2.36408	 edges= 7046	 schur= 0	 lambda= 134819.485111	 levenbergIter= 2
iteration= 52	 chi2= 523.908455	 time= 0.0477509	 cumTime= 2.41183	 edges= 7046	 schur= 0	 lambda= 179759.313481	 levenbergIter= 2
iteration= 53	 chi2= 523.908455	 time= 0.0398897	 cumTime= 2.45172	 edges= 7046	 schur= 0	 lambda= 119839.542321	 levenbergIter= 1
iteration= 54	 chi2= 523.908455	 time= 0.0477834	 cumTime= 2.4995	 edges= 7046	 schur= 0	 lambda= 159786.056428	 levenbergIter= 2
iteration= 55	 chi2= 523.908455	 time= 0.0478571	 cumTime= 2.54736	 edges= 7046	 schur= 0	 lambda= 213048.075237	 levenbergIter= 2
iteration= 56	 chi2= 523.908455	 time= 0.0477106	 cumTime= 2.59507	 edges= 7046	 schur= 0	 lambda= 284064.100316	 levenbergIter= 2
iteration= 57	 chi2= 523.908455	 time= 0.047834	 cumTime= 2.6429	 edges= 7046	 schur= 0	 lambda= 378752.133755	 levenbergIter= 2
iteration= 58	 chi2= 523.908455	 time= 0.0400486	 cumTime= 2.68295	 edges= 7046	 schur= 0	 lambda= 252501.422503	 levenbergIter= 1
iteration= 59	 chi2= 523.908455	 time= 0.0558823	 cumTime= 2.73884	 edges= 7046	 schur= 0	 lambda= 1346674.253352	 levenbergIter= 3
iteration= 60	 chi2= 523.908455	 time= 0.0399954	 cumTime= 2.77883	 edges= 7046	 schur= 0	 lambda= 897782.835568	 levenbergIter= 1
iteration= 61	 chi2= 523.908455	 time= 0.103178	 cumTime= 2.88201	 edges= 7046	 schur= 0	 lambda= 31587925341583663104.000000	 levenbergIter= 9
I0114 14:47:12.922147 425119 optimization.cc:255] RTK 误差:
I0114 14:47:12.922160 425119 optimization.cc:256] RTK 平移误差:数量: 1118, 均值: 0.024533, 中位数: 0.001735, 0.1分位: 0.000555, 0.9分位: 0.005800, 0.95分位:0.185730, 最大值: 0.970918, 阈值: 1.000000
I0114 14:47:12.922228 425119 optimization.cc:257] lidar 误差:数量: 5700, 均值: 0.009159, 中位数: 0.000007, 0.1分位: 0.000000, 0.9分位: 0.032959, 0.95分位:0.055079, 最大值: 0.265268, 阈值: 0.000000
I0114 14:47:12.923386 425119 optimization.cc:258] loop 误差:数量: 228, 均值: 1.948570, 中位数: 1.779741, 0.1分位: 0.619406, 0.9分位: 3.609942, 0.95分位:4.147956, 最大值: 5.030160, 阈值: 0.000000
I0114 14:47:12.963697 425119 optimization.cc:306] med error: 0.496892
I0114 14:47:12.973387 425119 optimization.cc:96] done
wu@WP:~/slam_in_autonomous_driving/data/ch9$ g2o_viewer before.g2o

         g2o_viewer after.g2o 结果类似,基本没有区别。

        4 回环检测

        系统是离线运行的,可以一次性把所有待检查的区域检查完,不必像实时系统那样需要等待前端的结果。执行匹配时,可以充分利用并行机制,加速回环检测的过程。回环检测结果以候选回环对的形式描述:

/**
 * 回环检测候选帧
 */
struct LoopCandidate {
    LoopCandidate() {}
    LoopCandidate(IdType id1, IdType id2, SE3 Tij) : idx1_(id1), idx2_(id2), Tij_(Tij) {}

    IdType idx1_ = 0;
    IdType idx2_ = 0;
    SE3 Tij_;
    double ndt_score_ = 0.0;
};

        4.1 回环检测流程 

        使用基于位置(欧氏距离)的回环检测,回环检测流程如下:

① 遍历第一阶段优化轨迹中的关键帧。

        对每两个在空间上相隔较近,但时间上存在一定距离的关键帧,进行一次回环检测。我们称这样一对关键帧为检查点。为了防止检查点数量太大,我们设置一个 ID 间隔,即每隔多少个关键帧取一次检查。实验当中这个间隔取 5。

        具体实现为:

        对每个关键帧 kf_first,遍历其之后的关键帧 kf_second,检查是否满足回环条件(距离小于 30 米)。若满足回环条件,则将其添加到候选回环对中。
        在整个过程中,使用 check_first 和 check_second 跟踪之前已添加为候选对的关键帧对,如果正在检查的关键帧 kf_first 离 check_first 的距离太近(ID 间隔小于 5),则跳过此关键帧进行下一个 kf_first。
        当 kf_first 满足距离条件,进而判断 kf_second 是否同时满足与 check_second (ID 间隔小于 5)以及 kf_first (ID 间隔小于 100)的距离条件,如果都满足则使用第一阶段优化位姿来计算并判定 kf_first 和 kf_second 之间的平移距离是否满足回环条件(距离小于 30 米),满足则添加到回环候选对当中。

void LoopClosure::DetectLoopCandidates() {
    KFPtr check_first = nullptr;
    KFPtr check_second = nullptr;

    LOG(INFO) << "detecting loop candidates from pose in stage 1";

    // 本质上是两重循环
    for (auto iter_first = keyframes_.begin(); iter_first != keyframes_.end(); ++iter_first) {
        auto kf_first = iter_first->second;

        if (check_first != nullptr && abs(int(kf_first->id_) - int(check_first->id_)) <= skip_id_) {
            // 两个关键帧之前ID太近
            continue;
        }

        for (auto iter_second = iter_first; iter_second != keyframes_.end(); ++iter_second) {
            auto kf_second = iter_second->second;

            if (check_second != nullptr && abs(int(kf_second->id_) - int(check_second->id_)) <= skip_id_) {
                // 两个关键帧之前ID太近
                continue;
            }

            if (abs(int(kf_first->id_) - int(kf_second->id_)) < min_id_interval_) {
                /// 在同一条轨迹中,如果间隔太近,就不考虑回环
                continue;
            }

            Vec3d dt = kf_first->opti_pose_1_.translation() - kf_second->opti_pose_1_.translation();
            double t2d = dt.head<2>().norm();  // x-y distance
            double range_th = min_distance_;

            if (t2d < range_th) {
                LoopCandidate c(kf_first->id_, kf_second->id_,
                                kf_first->opti_pose_1_.inverse() * kf_second->opti_pose_1_);
                loop_candiates_.emplace_back(c);
                check_first = kf_first;
                check_second = kf_second;
            }
        }
    }
    LOG(INFO) << "detected candidates: " << loop_candiates_.size();
}

② 并发计算候选回环对是否成立

        对于每个候选回环对,我们使用 scan to map 的配准方式,对候选回环对中第一个关键帧 kf1 建立子地图(前后各 40 个关键帧,每隔 4 个关键帧选取一帧,共计 20 帧点云拼接,建立在世界坐标系下),对第二个关键帧 kf2 只取其一帧点云。将点云与子地图进行多分辨率 NDT 配准,得到 kf2 世界坐标系下的位姿。

        与里程计方法不同,在回环检测配准过程中,我们经常要面对初值位姿估计很差的情况,希望算法不太依赖于给定的位姿初值。因此使用由粗至精的配准过程,即多分辨率 NDT 配准(体素分辨率 10.0, 5.0, 4.0, 3.0

        最后判断配准后的候选回环对中的 ndt_score_ 是否满足阈值(4.5),满足则视为成功的候选回环对。

void LoopClosure::ComputeLoopCandidates() {
    // 执行计算
    std::for_each(std::execution::par_unseq, loop_candiates_.begin(), loop_candiates_.end(),
                  [this](LoopCandidate& c) { ComputeForCandidate(c); });
    // 保存成功的候选
    std::vector<LoopCandidate> succ_candidates;
    for (const auto& lc : loop_candiates_) {
        if (lc.ndt_score_ > ndt_score_th_) {
            succ_candidates.emplace_back(lc);
        }
    }
    LOG(INFO) << "success: " << succ_candidates.size() << "/" << loop_candiates_.size();

    // 将两个容器的内容互换
    loop_candiates_.swap(succ_candidates);
}

void LoopClosure::ComputeForCandidate(sad::LoopCandidate& c) {
    LOG(INFO) << "aligning " << c.idx1_ << " with " << c.idx2_;
    const int submap_idx_range = 40;
    KFPtr kf1 = keyframes_.at(c.idx1_), kf2 = keyframes_.at(c.idx2_);

    auto build_submap = [this](int given_id, bool build_in_world) -> CloudPtr {
        CloudPtr submap(new PointCloudType);
        for (int idx = -submap_idx_range; idx < submap_idx_range; idx += 4) {
            int id = idx + given_id;
            if (id < 0) {
                continue;
            }
            auto iter = keyframes_.find(id);
            if (iter == keyframes_.end()) {
                continue;
            }

            auto kf = iter->second;
            CloudPtr cloud(new PointCloudType);
            pcl::io::loadPCDFile("/home/wu/slam_in_autonomous_driving/data/ch9/" + std::to_string(id) + ".pcd", *cloud);
            sad::RemoveGround(cloud, 0.1);

            if (cloud->empty()) {
                continue;
            }

            // 转到世界系下
            SE3 Twb = kf->opti_pose_1_;

            if (!build_in_world) {
                // 转到 given_id 所在的关键帧坐标系下
                Twb = keyframes_.at(given_id)->opti_pose_1_.inverse() * Twb;
            }

            CloudPtr cloud_trans(new PointCloudType);
            pcl::transformPointCloud(*cloud, *cloud_trans, Twb.matrix());

            *submap += *cloud_trans;
        }
        return submap;
    };

    auto submap_kf1 = build_submap(kf1->id_, true);

    CloudPtr submap_kf2(new PointCloudType);
    pcl::io::loadPCDFile("/home/wu/slam_in_autonomous_driving/data/ch9/" + std::to_string(kf2->id_) + ".pcd", *submap_kf2);

    if (submap_kf1->empty() || submap_kf2->empty()) {
        c.ndt_score_ = 0;
        return;
    }

    pcl::NormalDistributionsTransform<PointType, PointType> ndt;

    ndt.setTransformationEpsilon(0.05);
    ndt.setStepSize(0.7);
    ndt.setMaximumIterations(40);

    // T_wj
    Mat4f Tw2 = kf2->opti_pose_1_.matrix().cast<float>();

    /// 不同分辨率下的匹配
    // 多分辨率 NDT 配准
    CloudPtr output(new PointCloudType);
    std::vector<double> res{10.0, 5.0, 4.0, 3.0};
    for (auto& r : res) {
        // 设置/更改体素网格的分辨率。
        ndt.setResolution(r);
        // 降采样尺寸和体素分辨率成比例变化,比例因子为 0.1
        auto rough_map1 = VoxelCloud(submap_kf1, r * 0.1);
        auto rough_map2 = VoxelCloud(submap_kf2, r * 0.1);
        ndt.setInputTarget(rough_map1);
        ndt.setInputSource(rough_map2);

        ndt.align(*output, Tw2);
        Tw2 = ndt.getFinalTransformation();
    }

    Mat4d T = Tw2.cast<double>();
    Quatd q(T.block<3, 3>(0, 0));
    q.normalize();
    Vec3d t = T.block<3, 1>(0, 3);
    // T_ij = T_wi^-1 * T_wj
    c.Tij_ = kf1->opti_pose_1_.inverse() * SE3(q, t);
    // 返回 变换概率(Transformation Probability), 是一个 非负浮点数,值越大表示匹配效果越好
    c.ndt_score_ = ndt.getTransformationProbability();
    // std::cout << "Transformation Probability: " << c.ndt_score_ << std::endl;
}

③ 记录所有成功经过筛选的回环候选对,并在第二阶段优化时读取回环检测的结果
void LoopClosure::SaveResults() {
    auto save_SE3 = [](std::ostream& f, SE3 pose) {
        auto q = pose.so3().unit_quaternion();
        Vec3d t = pose.translation();
        f << t[0] << " " << t[1] << " " << t[2] << " " << q.x() << " " << q.y() << " " << q.z() << " " << q.w() << " ";
    };

    std::ofstream fout("/home/wu/slam_in_autonomous_driving/data/ch9/loops.txt");
    for (const auto& lc : loop_candiates_) {
        fout << lc.idx1_ << " " << lc.idx2_ << " " << lc.ndt_score_ << " ";
        save_SE3(fout, lc.Tij_);
        fout << std::endl;
    }
}

        4.2 回环检测结果

        回环检测数据会被存储在 data/ch9/keyframes.txt 。

        存储顺序为:idx1_、idx2_、ndt_score_、Tij_

wu@WP:~/slam_in_autonomous_driving/bin$ ./run_loopclosure

I0114 14:39:34.600237 424832 keyframe.cc:78] Loaded kfs: 1143
I0114 14:39:34.600332 424832 loopclosure.cc:26] keyframes: 1143
I0114 14:39:34.600500 424832 loopclosure.cc:47] detecting loop candidates from pose in stage 1
I0114 14:39:34.605368 424832 loopclosure.cc:84] detected candidates: 272
I0114 14:39:34.605371 424832 loopclosure.cc:109] aligning 0 with 100
I0114 14:39:34.660082 424832 loopclosure.cc:109] aligning 0 with 106
I0114 14:39:34.715945 424832 loopclosure.cc:109] aligning 246 with 631
I0114 14:39:34.838471 424832 loopclosure.cc:109] aligning 246 with 637
I0114 14:39:34.961339 424832 loopclosure.cc:109] aligning 252 with 612
I0114 14:39:35.083011 424832 loopclosure.cc:109] aligning 252 with 618
I0114 14:39:35.214619 424832 loopclosure.cc:109] aligning 252 with 624
I0114 14:39:35.336724 424832 loopclosure.cc:109] aligning 252 with 630
I0114 14:39:35.461663 424832 loopclosure.cc:109] aligning 252 with 636
I0114 14:39:35.698182 424832 loopclosure.cc:109] aligning 252 with 642
I0114 14:39:35.822700 424832 loopclosure.cc:109] aligning 252 with 648
I0114 14:39:35.944046 424832 loopclosure.cc:109] aligning 258 with 602
I0114 14:39:36.076938 424832 loopclosure.cc:109] aligning 258 with 608
I0114 14:39:36.218856 424832 loopclosure.cc:109] aligning 258 with 614
I0114 14:39:36.361122 424832 loopclosure.cc:109] aligning 258 with 620
I0114 14:39:36.492717 424832 loopclosure.cc:109] aligning 258 with 626
I0114 14:39:36.618754 424832 loopclosure.cc:109] aligning 258 with 632
I0114 14:39:36.735234 424832 loopclosure.cc:109] aligning 258 with 638
I0114 14:39:36.852849 424832 loopclosure.cc:109] aligning 258 with 644
I0114 14:39:36.974691 424832 loopclosure.cc:109] aligning 258 with 650
I0114 14:39:37.102720 424832 loopclosure.cc:109] aligning 264 with 591
I0114 14:39:37.239533 424832 loopclosure.cc:109] aligning 264 with 597
I0114 14:39:37.377104 424832 loopclosure.cc:109] aligning 264 with 603
I0114 14:39:37.514230 424832 loopclosure.cc:109] aligning 264 with 609
I0114 14:39:37.659909 424832 loopclosure.cc:109] aligning 264 with 615
I0114 14:39:37.802589 424832 loopclosure.cc:109] aligning 264 with 621
I0114 14:39:37.935138 424832 loopclosure.cc:109] aligning 264 with 627
I0114 14:39:38.060462 424832 loopclosure.cc:109] aligning 264 with 633
I0114 14:39:38.178555 424832 loopclosure.cc:109] aligning 264 with 639
I0114 14:39:38.302886 424832 loopclosure.cc:109] aligning 264 with 645
I0114 14:39:38.424055 424832 loopclosure.cc:109] aligning 264 with 651
I0114 14:39:38.555510 424832 loopclosure.cc:109] aligning 270 with 577
I0114 14:39:38.683847 424832 loopclosure.cc:109] aligning 270 with 583
I0114 14:39:38.814306 424832 loopclosure.cc:109] aligning 270 with 589
I0114 14:39:38.945605 424832 loopclosure.cc:109] aligning 270 with 595
I0114 14:39:39.081390 424832 loopclosure.cc:109] aligning 270 with 601
I0114 14:39:39.217231 424832 loopclosure.cc:109] aligning 270 with 607
I0114 14:39:39.361466 424832 loopclosure.cc:109] aligning 270 with 613
I0114 14:39:39.482360 424832 loopclosure.cc:109] aligning 270 with 619
I0114 14:39:39.612998 424832 loopclosure.cc:109] aligning 270 with 625
I0114 14:39:39.735734 424832 loopclosure.cc:109] aligning 270 with 631
I0114 14:39:39.855314 424832 loopclosure.cc:109] aligning 270 with 637
I0114 14:39:39.976063 424832 loopclosure.cc:109] aligning 270 with 643
I0114 14:39:40.100976 424832 loopclosure.cc:109] aligning 270 with 649
I0114 14:39:40.233157 424832 loopclosure.cc:109] aligning 276 with 570
I0114 14:39:40.358598 424832 loopclosure.cc:109] aligning 276 with 576
I0114 14:39:40.482266 424832 loopclosure.cc:109] aligning 276 with 582
I0114 14:39:40.599781 424832 loopclosure.cc:109] aligning 276 with 588
I0114 14:39:40.732409 424832 loopclosure.cc:109] aligning 276 with 594
I0114 14:39:40.862918 424832 loopclosure.cc:109] aligning 276 with 600
I0114 14:39:41.003029 424832 loopclosure.cc:109] aligning 276 with 606
I0114 14:39:41.145427 424832 loopclosure.cc:109] aligning 276 with 612
I0114 14:39:41.264133 424832 loopclosure.cc:109] aligning 276 with 618
I0114 14:39:41.391021 424832 loopclosure.cc:109] aligning 276 with 624
I0114 14:39:41.510094 424832 loopclosure.cc:109] aligning 276 with 630
I0114 14:39:41.628989 424832 loopclosure.cc:109] aligning 276 with 636
I0114 14:39:41.747018 424832 loopclosure.cc:109] aligning 276 with 642
I0114 14:39:41.868511 424832 loopclosure.cc:109] aligning 276 with 648
I0114 14:39:41.986932 424832 loopclosure.cc:109] aligning 282 with 565
I0114 14:39:42.131405 424832 loopclosure.cc:109] aligning 282 with 571
I0114 14:39:42.264037 424832 loopclosure.cc:109] aligning 282 with 577
I0114 14:39:42.397466 424832 loopclosure.cc:109] aligning 282 with 583
I0114 14:39:42.533788 424832 loopclosure.cc:109] aligning 282 with 589
I0114 14:39:42.670135 424832 loopclosure.cc:109] aligning 282 with 595
I0114 14:39:42.810570 424832 loopclosure.cc:109] aligning 282 with 601
I0114 14:39:42.951463 424832 loopclosure.cc:109] aligning 282 with 607
I0114 14:39:43.101276 424832 loopclosure.cc:109] aligning 282 with 613
I0114 14:39:43.226984 424832 loopclosure.cc:109] aligning 282 with 619
I0114 14:39:43.364259 424832 loopclosure.cc:109] aligning 282 with 625
I0114 14:39:43.491612 424832 loopclosure.cc:109] aligning 282 with 631
I0114 14:39:43.615964 424832 loopclosure.cc:109] aligning 282 with 637
I0114 14:39:43.742473 424832 loopclosure.cc:109] aligning 288 with 559
I0114 14:39:43.881448 424832 loopclosure.cc:109] aligning 288 with 565
I0114 14:39:44.026831 424832 loopclosure.cc:109] aligning 288 with 571
I0114 14:39:44.159776 424832 loopclosure.cc:109] aligning 288 with 577
I0114 14:39:44.294018 424832 loopclosure.cc:109] aligning 288 with 583
I0114 14:39:44.437618 424832 loopclosure.cc:109] aligning 288 with 589
I0114 14:39:44.573611 424832 loopclosure.cc:109] aligning 288 with 595
I0114 14:39:44.710968 424832 loopclosure.cc:109] aligning 288 with 601
I0114 14:39:44.857462 424832 loopclosure.cc:109] aligning 288 with 607
I0114 14:39:45.006702 424832 loopclosure.cc:109] aligning 288 with 613
I0114 14:39:45.133204 424832 loopclosure.cc:109] aligning 288 with 619
I0114 14:39:45.275009 424832 loopclosure.cc:109] aligning 288 with 625
I0114 14:39:45.406067 424832 loopclosure.cc:109] aligning 288 with 631
I0114 14:39:45.531435 424832 loopclosure.cc:109] aligning 294 with 555
I0114 14:39:45.834162 424832 loopclosure.cc:109] aligning 294 with 561
I0114 14:39:45.985754 424832 loopclosure.cc:109] aligning 294 with 567
I0114 14:39:46.139230 424832 loopclosure.cc:109] aligning 294 with 573
I0114 14:39:46.285375 424832 loopclosure.cc:109] aligning 294 with 579
I0114 14:39:46.429277 424832 loopclosure.cc:109] aligning 294 with 585
I0114 14:39:46.570621 424832 loopclosure.cc:109] aligning 294 with 591
I0114 14:39:46.722086 424832 loopclosure.cc:109] aligning 294 with 597
I0114 14:39:46.869537 424832 loopclosure.cc:109] aligning 294 with 603
I0114 14:39:47.013934 424832 loopclosure.cc:109] aligning 294 with 609
I0114 14:39:47.166580 424832 loopclosure.cc:109] aligning 294 with 615
I0114 14:39:47.318617 424832 loopclosure.cc:109] aligning 294 with 621
I0114 14:39:47.460216 424832 loopclosure.cc:109] aligning 294 with 627
I0114 14:39:47.594961 424832 loopclosure.cc:109] aligning 300 with 551
I0114 14:39:47.746563 424832 loopclosure.cc:109] aligning 300 with 557
I0114 14:39:47.896881 424832 loopclosure.cc:109] aligning 300 with 563
I0114 14:39:48.044682 424832 loopclosure.cc:109] aligning 300 with 569
I0114 14:39:48.190032 424832 loopclosure.cc:109] aligning 300 with 575
I0114 14:39:48.334643 424832 loopclosure.cc:109] aligning 300 with 581
I0114 14:39:48.486544 424832 loopclosure.cc:109] aligning 300 with 587
I0114 14:39:48.637301 424832 loopclosure.cc:109] aligning 300 with 593
I0114 14:39:48.790048 424832 loopclosure.cc:109] aligning 300 with 599
I0114 14:39:48.942795 424832 loopclosure.cc:109] aligning 300 with 605
I0114 14:39:49.072114 424832 loopclosure.cc:109] aligning 300 with 611
I0114 14:39:49.230252 424832 loopclosure.cc:109] aligning 300 with 617
I0114 14:39:49.377197 424832 loopclosure.cc:109] aligning 300 with 623
I0114 14:39:49.514369 424832 loopclosure.cc:109] aligning 306 with 547
I0114 14:39:49.676714 424832 loopclosure.cc:109] aligning 306 with 553
I0114 14:39:49.829732 424832 loopclosure.cc:109] aligning 306 with 559
I0114 14:39:49.986097 424832 loopclosure.cc:109] aligning 306 with 565
I0114 14:39:50.150573 424832 loopclosure.cc:109] aligning 306 with 571
I0114 14:39:50.298872 424832 loopclosure.cc:109] aligning 306 with 577
I0114 14:39:50.448585 424832 loopclosure.cc:109] aligning 306 with 583
I0114 14:39:50.597843 424832 loopclosure.cc:109] aligning 306 with 589
I0114 14:39:50.747596 424832 loopclosure.cc:109] aligning 306 with 595
I0114 14:39:50.901561 424832 loopclosure.cc:109] aligning 306 with 601
I0114 14:39:51.055693 424832 loopclosure.cc:109] aligning 306 with 607
I0114 14:39:51.217823 424832 loopclosure.cc:109] aligning 306 with 613
I0114 14:39:51.356518 424832 loopclosure.cc:109] aligning 306 with 619
I0114 14:39:51.505082 424832 loopclosure.cc:109] aligning 312 with 541
I0114 14:39:51.665200 424832 loopclosure.cc:109] aligning 312 with 547
I0114 14:39:51.839165 424832 loopclosure.cc:109] aligning 312 with 553
I0114 14:39:51.997599 424832 loopclosure.cc:109] aligning 312 with 559
I0114 14:39:52.156019 424832 loopclosure.cc:109] aligning 312 with 565
I0114 14:39:52.320459 424832 loopclosure.cc:109] aligning 312 with 571
I0114 14:39:52.471503 424832 loopclosure.cc:109] aligning 312 with 577
I0114 14:39:52.624399 424832 loopclosure.cc:109] aligning 312 with 583
I0114 14:39:52.786643 424832 loopclosure.cc:109] aligning 312 with 589
I0114 14:39:52.938331 424832 loopclosure.cc:109] aligning 312 with 595
I0114 14:39:53.094488 424832 loopclosure.cc:109] aligning 312 with 601
I0114 14:39:53.264699 424832 loopclosure.cc:109] aligning 312 with 607
I0114 14:39:53.432278 424832 loopclosure.cc:109] aligning 312 with 613
I0114 14:39:53.575907 424832 loopclosure.cc:109] aligning 312 with 619
I0114 14:39:53.734344 424832 loopclosure.cc:109] aligning 318 with 536
I0114 14:39:53.909785 424832 loopclosure.cc:109] aligning 318 with 542
I0114 14:39:54.069643 424832 loopclosure.cc:109] aligning 318 with 548
I0114 14:39:54.280661 424832 loopclosure.cc:109] aligning 318 with 554
I0114 14:39:54.440966 424832 loopclosure.cc:109] aligning 318 with 560
I0114 14:39:54.928949 424832 loopclosure.cc:109] aligning 318 with 566
I0114 14:39:55.095808 424832 loopclosure.cc:109] aligning 318 with 572
I0114 14:39:55.260769 424832 loopclosure.cc:109] aligning 318 with 578
I0114 14:39:55.419515 424832 loopclosure.cc:109] aligning 318 with 584
I0114 14:39:55.568085 424832 loopclosure.cc:109] aligning 318 with 590
I0114 14:39:55.734709 424832 loopclosure.cc:109] aligning 318 with 596
I0114 14:39:55.890156 424832 loopclosure.cc:109] aligning 318 with 602
I0114 14:39:56.050088 424832 loopclosure.cc:109] aligning 318 with 608
I0114 14:39:56.216840 424832 loopclosure.cc:109] aligning 324 with 530
I0114 14:39:56.392796 424832 loopclosure.cc:109] aligning 324 with 536
I0114 14:39:56.572223 424832 loopclosure.cc:109] aligning 324 with 542
I0114 14:39:56.737180 424832 loopclosure.cc:109] aligning 324 with 548
I0114 14:39:56.915028 424832 loopclosure.cc:109] aligning 324 with 554
I0114 14:39:57.080109 424832 loopclosure.cc:109] aligning 324 with 560
I0114 14:39:57.252213 424832 loopclosure.cc:109] aligning 324 with 566
I0114 14:39:57.423735 424832 loopclosure.cc:109] aligning 324 with 572
I0114 14:39:57.590920 424832 loopclosure.cc:109] aligning 324 with 578
I0114 14:39:57.753762 424832 loopclosure.cc:109] aligning 324 with 584
I0114 14:39:57.914364 424832 loopclosure.cc:109] aligning 324 with 590
I0114 14:39:58.072743 424832 loopclosure.cc:109] aligning 324 with 596
I0114 14:39:58.231325 424832 loopclosure.cc:109] aligning 324 with 602
I0114 14:39:58.398078 424832 loopclosure.cc:109] aligning 330 with 524
I0114 14:39:58.583384 424832 loopclosure.cc:109] aligning 330 with 530
I0114 14:39:58.772176 424832 loopclosure.cc:109] aligning 330 with 536
I0114 14:39:58.960115 424832 loopclosure.cc:109] aligning 330 with 542
I0114 14:39:59.135846 424832 loopclosure.cc:109] aligning 330 with 548
I0114 14:39:59.323920 424832 loopclosure.cc:109] aligning 330 with 554
I0114 14:39:59.499577 424832 loopclosure.cc:109] aligning 330 with 560
I0114 14:39:59.693114 424832 loopclosure.cc:109] aligning 330 with 566
I0114 14:39:59.876761 424832 loopclosure.cc:109] aligning 330 with 572
I0114 14:40:00.057803 424832 loopclosure.cc:109] aligning 330 with 578
I0114 14:40:00.229849 424832 loopclosure.cc:109] aligning 336 with 519
I0114 14:40:00.416292 424832 loopclosure.cc:109] aligning 336 with 525
I0114 14:40:00.634541 424832 loopclosure.cc:109] aligning 336 with 531
I0114 14:40:00.830394 424832 loopclosure.cc:109] aligning 336 with 537
I0114 14:40:01.022815 424832 loopclosure.cc:109] aligning 336 with 543
I0114 14:40:01.239847 424832 loopclosure.cc:109] aligning 336 with 549
I0114 14:40:01.431026 424832 loopclosure.cc:109] aligning 336 with 555
I0114 14:40:01.624220 424832 loopclosure.cc:109] aligning 336 with 561
I0114 14:40:01.808413 424832 loopclosure.cc:109] aligning 336 with 567
I0114 14:40:01.998997 424832 loopclosure.cc:109] aligning 336 with 573
I0114 14:40:02.180449 424832 loopclosure.cc:109] aligning 342 with 513
I0114 14:40:02.370496 424832 loopclosure.cc:109] aligning 342 with 519
I0114 14:40:02.559326 424832 loopclosure.cc:109] aligning 342 with 525
I0114 14:40:02.761710 424832 loopclosure.cc:109] aligning 342 with 531
I0114 14:40:02.960893 424832 loopclosure.cc:109] aligning 342 with 537
I0114 14:40:03.152431 424832 loopclosure.cc:109] aligning 342 with 543
I0114 14:40:03.376098 424832 loopclosure.cc:109] aligning 342 with 549
I0114 14:40:03.569427 424832 loopclosure.cc:109] aligning 342 with 555
I0114 14:40:03.761706 424832 loopclosure.cc:109] aligning 342 with 561
I0114 14:40:03.948815 424832 loopclosure.cc:109] aligning 342 with 567
I0114 14:40:04.140497 424832 loopclosure.cc:109] aligning 348 with 507
I0114 14:40:04.349716 424832 loopclosure.cc:109] aligning 348 with 513
I0114 14:40:04.546634 424832 loopclosure.cc:109] aligning 348 with 519
I0114 14:40:04.740049 424832 loopclosure.cc:109] aligning 348 with 525
I0114 14:40:04.959317 424832 loopclosure.cc:109] aligning 348 with 531
I0114 14:40:05.162758 424832 loopclosure.cc:109] aligning 348 with 537
I0114 14:40:05.361279 424832 loopclosure.cc:109] aligning 348 with 543
I0114 14:40:05.591269 424832 loopclosure.cc:109] aligning 348 with 549
I0114 14:40:05.794329 424832 loopclosure.cc:109] aligning 348 with 555
I0114 14:40:05.995422 424832 loopclosure.cc:109] aligning 348 with 561
I0114 14:40:06.189824 424832 loopclosure.cc:109] aligning 354 with 501
I0114 14:40:06.387213 424832 loopclosure.cc:109] aligning 354 with 507
I0114 14:40:06.746068 424832 loopclosure.cc:109] aligning 354 with 513
I0114 14:40:06.939594 424832 loopclosure.cc:109] aligning 354 with 519
I0114 14:40:07.133322 424832 loopclosure.cc:109] aligning 354 with 525
I0114 14:40:07.339231 424832 loopclosure.cc:109] aligning 354 with 531
I0114 14:40:07.544878 424832 loopclosure.cc:109] aligning 354 with 537
I0114 14:40:07.736769 424832 loopclosure.cc:109] aligning 354 with 543
I0114 14:40:07.930209 424832 loopclosure.cc:109] aligning 354 with 549
I0114 14:40:08.125648 424832 loopclosure.cc:109] aligning 354 with 555
I0114 14:40:08.320142 424832 loopclosure.cc:109] aligning 360 with 495
I0114 14:40:08.540534 424832 loopclosure.cc:109] aligning 360 with 501
I0114 14:40:08.779071 424832 loopclosure.cc:109] aligning 360 with 507
I0114 14:40:08.993053 424832 loopclosure.cc:109] aligning 360 with 513
I0114 14:40:09.191763 424832 loopclosure.cc:109] aligning 360 with 519
I0114 14:40:09.401374 424832 loopclosure.cc:109] aligning 360 with 525
I0114 14:40:09.623682 424832 loopclosure.cc:109] aligning 360 with 531
I0114 14:40:09.826388 424832 loopclosure.cc:109] aligning 360 with 537
I0114 14:40:10.029390 424832 loopclosure.cc:109] aligning 360 with 543
I0114 14:40:10.236105 424832 loopclosure.cc:109] aligning 360 with 549
I0114 14:40:10.442286 424832 loopclosure.cc:109] aligning 366 with 489
I0114 14:40:10.632905 424832 loopclosure.cc:109] aligning 366 with 495
I0114 14:40:10.840906 424832 loopclosure.cc:109] aligning 366 with 501
I0114 14:40:11.037856 424832 loopclosure.cc:109] aligning 366 with 507
I0114 14:40:11.260270 424832 loopclosure.cc:109] aligning 366 with 513
I0114 14:40:11.465464 424832 loopclosure.cc:109] aligning 366 with 519
I0114 14:40:11.659193 424832 loopclosure.cc:109] aligning 366 with 525
I0114 14:40:11.875249 424832 loopclosure.cc:109] aligning 366 with 531
I0114 14:40:12.082633 424832 loopclosure.cc:109] aligning 366 with 537
I0114 14:40:12.279668 424832 loopclosure.cc:109] aligning 366 with 543
I0114 14:40:12.495205 424832 loopclosure.cc:109] aligning 372 with 483
I0114 14:40:12.722119 424832 loopclosure.cc:109] aligning 372 with 489
I0114 14:40:12.916532 424832 loopclosure.cc:109] aligning 372 with 495
I0114 14:40:13.117549 424832 loopclosure.cc:109] aligning 372 with 501
I0114 14:40:13.347931 424832 loopclosure.cc:109] aligning 372 with 507
I0114 14:40:13.552963 424832 loopclosure.cc:109] aligning 372 with 513
I0114 14:40:13.744216 424832 loopclosure.cc:109] aligning 372 with 519
I0114 14:40:13.935374 424832 loopclosure.cc:109] aligning 372 with 525
I0114 14:40:14.144537 424832 loopclosure.cc:109] aligning 372 with 531
I0114 14:40:14.345687 424832 loopclosure.cc:109] aligning 372 with 537
I0114 14:40:14.540819 424832 loopclosure.cc:109] aligning 378 with 478
I0114 14:40:14.721980 424832 loopclosure.cc:109] aligning 378 with 484
I0114 14:40:14.918220 424832 loopclosure.cc:109] aligning 378 with 490
I0114 14:40:15.098886 424832 loopclosure.cc:109] aligning 378 with 496
I0114 14:40:15.302568 424832 loopclosure.cc:109] aligning 378 with 502
I0114 14:40:15.520671 424832 loopclosure.cc:109] aligning 378 with 508
I0114 14:40:15.730944 424832 loopclosure.cc:109] aligning 378 with 514
I0114 14:40:15.933339 424832 loopclosure.cc:109] aligning 378 with 520
I0114 14:40:16.116988 424832 loopclosure.cc:109] aligning 378 with 526
I0114 14:40:16.304324 424832 loopclosure.cc:109] aligning 378 with 532
I0114 14:40:16.513626 424832 loopclosure.cc:109] aligning 384 with 484
I0114 14:40:16.713029 424832 loopclosure.cc:109] aligning 384 with 490
I0114 14:40:16.898360 424832 loopclosure.cc:109] aligning 384 with 496
I0114 14:40:17.177525 424832 loopclosure.cc:109] aligning 384 with 502
I0114 14:40:17.511034 424832 loopclosure.cc:109] aligning 384 with 508
I0114 14:40:17.715927 424832 loopclosure.cc:109] aligning 384 with 514
I0114 14:40:18.106099 424832 loopclosure.cc:109] aligning 384 with 520
I0114 14:40:18.292825 424832 loopclosure.cc:109] aligning 384 with 526
I0114 14:40:18.485371 424832 loopclosure.cc:109] aligning 390 with 490
I0114 14:40:18.665769 424832 loopclosure.cc:109] aligning 390 with 496
I0114 14:40:18.902027 424832 loopclosure.cc:109] aligning 390 with 502
I0114 14:40:19.115675 424832 loopclosure.cc:109] aligning 390 with 508
I0114 14:40:19.313446 424832 loopclosure.cc:109] aligning 390 with 514
I0114 14:40:19.656185 424832 loopclosure.cc:109] aligning 390 with 520
I0114 14:40:19.840093 424832 loopclosure.cc:109] aligning 396 with 496
I0114 14:40:20.085132 424832 loopclosure.cc:109] aligning 396 with 502
I0114 14:40:20.293792 424832 loopclosure.cc:109] aligning 396 with 508
I0114 14:40:20.501314 424832 loopclosure.cc:109] aligning 396 with 514
I0114 14:40:20.699945 424832 loopclosure.cc:109] aligning 402 with 502
I0114 14:40:20.910954 424832 loopclosure.cc:102] success: 249/272

        5 轨迹可视化

        将 lidar_pose_、rtk_pose_、opti_pose_1_、opti_pose_2_ 轨迹可视化:

wu@WP:~/slam_in_autonomous_driving/scripts$ python3 all_path.py /home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt 

all_path.py:10: MatplotlibDeprecationWarning: Axes3D(fig) adding itself to the figure is deprecated since 3.4. Pass the keyword argument auto_add_to_figure=False and use fig.add_axes(ax) to suppress this warning. The default value of auto_add_to_figure will change to False in mpl3.5 and True values will no longer work in 3.6.  This is consistent with other Axes classes.
  ax = Axes3D(fig

        2D 轨迹:

        3D 轨迹:

        6 地图导出

        根据 pose_source 参数选择位姿来源,可选择 lidar/rtk/opti1/opti2。原理是根据每个关键帧的位姿,将关键帧点云转到世界坐标系上,再拼接起来。

/**
 * 将keyframes.txt中的地图和点云合并为一个pcd
 */

int main(int argc, char** argv) {
    google::ParseCommandLineFlags(&argc, &argv, true);
    google::InitGoogleLogging(argv[0]);
    FLAGS_stderrthreshold = google::INFO;
    FLAGS_colorlogtostderr = true;

    using namespace sad;
    std::map<IdType, KFPtr> keyframes;
    if (!LoadKeyFrames("/home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt", keyframes)) {
        LOG(ERROR) << "failed to load keyframes.txt";
        return -1;
    }

    if (keyframes.empty()) {
        LOG(INFO) << "keyframes are empty";
        return 0;
    }

    // dump kf cloud and merge
    LOG(INFO) << "merging";
    CloudPtr global_cloud(new PointCloudType);

    pcl::VoxelGrid<PointType> voxel_grid_filter;
    float resolution = FLAGS_voxel_size;
    voxel_grid_filter.setLeafSize(resolution, resolution, resolution);

    int cnt = 0;
    for (auto& kfp : keyframes) {
        auto kf = kfp.second;
        SE3 pose;
        if (FLAGS_pose_source == "rtk") {
            pose = kf->rtk_pose_;
        } else if (FLAGS_pose_source == "lidar") {
            pose = kf->lidar_pose_;
        } else if (FLAGS_pose_source == "opti1") {
            pose = kf->opti_pose_1_;
        } else if (FLAGS_pose_source == "opti2") {
            pose = kf->opti_pose_2_;
        }

        kf->LoadScan("/home/wu/slam_in_autonomous_driving/data/ch9/");

        CloudPtr cloud_trans(new PointCloudType);
        pcl::transformPointCloud(*kf->cloud_, *cloud_trans, pose.matrix());

        // voxel size
        CloudPtr kf_cloud_voxeled(new PointCloudType);
        voxel_grid_filter.setInputCloud(cloud_trans);
        voxel_grid_filter.filter(*kf_cloud_voxeled);

        *global_cloud += *kf_cloud_voxeled;
        kf->cloud_ = nullptr;

        LOG(INFO) << "merging " << cnt << " in " << keyframes.size() << ", pts: " << kf_cloud_voxeled->size()
                  << " global pts: " << global_cloud->size();
        cnt++;
    }

    if (!global_cloud->empty()) {
        sad::SaveCloudToFile(FLAGS_dump_to + "/map.pcd", *global_cloud);
    }

    LOG(INFO) << "done.";
    return 0;
}

        运行结果:

wu@WP:~/slam_in_autonomous_driving/bin$ ./dump_map --pose_source=opti2

I0114 15:08:02.963590 425971 keyframe.cc:78] Loaded kfs: 1143
I0114 15:08:02.963681 425971 dump_map.cc:42] merging
I0114 15:08:02.967100 425971 dump_map.cc:76] merging 0 in 1143, pts: 1758 global pts: 1758
I0114 15:08:02.970384 425971 dump_map.cc:76] merging 1 in 1143, pts: 1771 global pts: 3529
I0114 15:08:02.973193 425971 dump_map.cc:76] merging 2 in 1143, pts: 1524 global pts: 5053
//* 省略 *//
I0114 15:08:09.278196 425971 dump_map.cc:76] merging 1140 in 1143, pts: 2632 global pts: 3317012
I0114 15:08:09.282899 425971 dump_map.cc:76] merging 1141 in 1143, pts: 2334 global pts: 3319346
I0114 15:08:09.287400 425971 dump_map.cc:76] merging 1142 in 1143, pts: 2246 global pts: 3321592
I0114 15:08:12.711279 425971 dump_map.cc:85] done.

        7 地图分块

         在多数应用中,我们希望控制实时点云的载入规模,例如只加载自身周围 200 米范围内的点云,其他范围的点云则视情况卸载,这样可以控制实时系统的计算量。因此需要对大地图进行分块处理(这里按照 100m 进行切分)。

        点云的切分实际上是根据每个点的坐标计算其所在的网格,然后把它投到对应的网格中去。如果我们考虑更周密一些的话,也可以把并行化、点云分批读写等行为考虑进来。

        地图分块的流程是:遍历每一个关键帧。对于当前关键帧,遍历其每一个点,对每个点的 x,y 坐标进行处理,判断其所属的网格并将其插入到对应的子地图块中。

        这里对每个点的 x,y 坐标进行如下处理:

            // floor():向下取整。-50 是为了使包含原 (0,0) 的区域不被分开,形成以 (0,0) 为中心的块
            int gx = floor((pt.x - 50.0) / 100);
            int gy = floor((pt.y - 50.0) / 100);

         

int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);
    FLAGS_stderrthreshold = google::INFO;
    FLAGS_colorlogtostderr = true;
    google::ParseCommandLineFlags(&argc, &argv, true);

    using namespace sad;

    std::map<IdType, KFPtr> keyframes;
    if (!LoadKeyFrames("/home/wu/slam_in_autonomous_driving/data/ch9/keyframes.txt", keyframes)) {
        LOG(ERROR) << "failed to load keyframes";
        return 0;
    }

    std::map<Vec2i, CloudPtr, less_vec<2>> map_data;  // 以网格ID为索引的地图数据
    pcl::VoxelGrid<PointType> voxel_grid_filter;
    float resolution = FLAGS_voxel_size;
    voxel_grid_filter.setLeafSize(resolution, resolution, resolution);

    // 逻辑和dump map差不多,但每个点个查找它的网格ID,没有的话会创建
    for (auto& kfp : keyframes) {
        auto kf = kfp.second;
        kf->LoadScan("/home/wu/slam_in_autonomous_driving/data/ch9/");

        CloudPtr cloud_trans(new PointCloudType);
        pcl::transformPointCloud(*kf->cloud_, *cloud_trans, kf->opti_pose_2_.matrix());

        // voxel size
        CloudPtr kf_cloud_voxeled(new PointCloudType);
        voxel_grid_filter.setInputCloud(cloud_trans);
        voxel_grid_filter.filter(*kf_cloud_voxeled);

        LOG(INFO) << "building kf " << kf->id_ << " in " << keyframes.size();

        // add to grid
        for (const auto& pt : kf_cloud_voxeled->points) {
            // floor():向下取整。-50 是为了使包含原 (0,0) 的区域不被分开,形成以 (0,0) 为中心的块
            int gx = floor((pt.x - 50.0) / 100);
            int gy = floor((pt.y - 50.0) / 100);
            Vec2i key(gx, gy);
            auto iter = map_data.find(key);
            if (iter == map_data.end()) {
                // create point cloud
                CloudPtr cloud(new PointCloudType);
                // 最后插入的是 pt,(gx, gy)只是为了分块。
                cloud->points.emplace_back(pt);
                cloud->is_dense = false;
                cloud->height = 1;
                map_data.emplace(key, cloud);
            } else {
                iter->second->points.emplace_back(pt);
            }
        }
    }

    // 存储点云和索引文件
    LOG(INFO) << "saving maps, grids: " << map_data.size();
    std::system("mkdir -p /home/wu/slam_in_autonomous_driving/data/ch9/map_data/");
    std::system("rm -rf /home/wu/slam_in_autonomous_driving/data/ch9/map_data/*");  // 清理一下文件夹
    std::ofstream fout("/home/wu/slam_in_autonomous_driving/data/ch9/map_data/map_index.txt");
    for (auto& dp : map_data) {
        fout << dp.first[0] << " " << dp.first[1] << std::endl;
        dp.second->width = dp.second->size();
        sad::VoxelGrid(dp.second, 0.1);

        sad::SaveCloudToFile(
            "/home/wu/slam_in_autonomous_driving/data/ch9/map_data/" + std::to_string(dp.first[0]) + "_" + std::to_string(dp.first[1]) + ".pcd",
            *dp.second);
    }
    fout.close();

    LOG(INFO) << "done.";
    return 0;
}

        运行结果:

wu@WP:~/slam_in_autonomous_driving/bin$ ./split_map 

I0114 15:20:58.483939 426447 keyframe.cc:78] Loaded kfs: 1143
I0114 15:20:58.487437 426447 split_map.cc:52] building kf 0 in 1143
I0114 15:20:58.490739 426447 split_map.cc:52] building kf 1 in 1143
I0114 15:20:58.493566 426447 split_map.cc:52] building kf 2 in 1143
//* 省略 *//
I0114 15:21:04.844982 426447 split_map.cc:52] building kf 1140 in 1143
I0114 15:21:04.849773 426447 split_map.cc:52] building kf 1141 in 1143
I0114 15:21:04.854301 426447 split_map.cc:52] building kf 1142 in 1143
I0114 15:21:04.854329 426447 split_map.cc:76] saving maps, grids: 24
I0114 15:21:06.976038 426447 split_map.cc:91] done.

         8 本章小结

        本章主要向读者演示了一个完整的点云地图构建、优化、切分导出的程序,可以看到,整个建图过程是比较流程化、自动化的。这些地图可以帮助我们进行激光高精定位,让车辆和机器人在没有 RTK 的环境下获取高精度位姿

int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);
    FLAGS_stderrthreshold = google::INFO;
    FLAGS_colorlogtostderr = true;
    google::ParseCommandLineFlags(&argc, &argv, true);

    LOG(INFO) << "testing frontend";
    sad::Frontend frontend(FLAGS_config_yaml);
    if (!frontend.Init()) {
        LOG(ERROR) << "failed to init frontend.";
        return -1;
    }

    frontend.Run();

    sad::Optimization opti(FLAGS_config_yaml);
    if (!opti.Init(1)) {
        LOG(ERROR) << "failed to init opti1.";
        return -1;
    }
    opti.Run();

    sad::LoopClosure lc(FLAGS_config_yaml);
    if (!lc.Init()) {
        LOG(ERROR) << "failed to init loop closure.";
        return -1;
    }
    lc.Run();

    sad::Optimization opti2(FLAGS_config_yaml);
    if (!opti2.Init(2)) {
        LOG(ERROR) << "failed to init opti2.";
        return -1;
    }
    opti2.Run();

    LOG(INFO) << "done.";
    return 0;
}

Logo

加入社区

更多推荐